Minggu, 15 Januari 2012

FUNGSI KEYBOARD UNTUK POWER POINT

Dalam pembuatan multimedia presentasi pembelajaran ataupun Multimedia pembelajaran interaktif, perpindahan slide tidak lagi secara otomatis ataupun berdasarkan clik (beberapa kasus masih memerlukan otomatis). Langkah-langkah membuatnya adalah :
  1. Buka presentasi baru
  2. Buat 5 buah slide baru beri jdudul di setiap slide
    1. Slide 1 : Menu Utama
    2. Slide 2 : Materi
    3. Slide 3 : Evaluasi
    4. Slide 4 : Kompetensi
    5. Slide 5 : Tentang
  3. Buat tombol di menu utama untuk hyperlink ke slide-slide yang lain. Buat tombol dengan menggunakan menu Insert –Shape – Rounded Retangle
  4. Buat tombol kemudian beri nama tiap-tombol sesuai dengan fungsinya
  5. Beri hyperlink dengan cara seleksi/pilih tombol yang akan di beri link masuk pada menu Insert – Action.

    Pada tab Mouse Click pilih pada hyperlink to : pilih slide
    Pada menu Hyperlink To, pilih slideyang di inginkan. Kalau tadi yang di beri action tombol materi maka di Hyperlink to Slide pilih slide materi
    Setelah selesai klik ok.
  6. Masih pada action setting Centang pada Play Sound kemudian pilih jenis sound dan Higlight Clik

    Setelelah selesai klik ok.
  7. Lakukan hal yang sama pada setiap tombol yang ada. Beri action ke setiap slide yang ingin di tuju.
  8. Seleksi semua tombol kemudian copy
masuk pada master view

Pada slide master no 1 klik tombol paste (copy paste ke dalam slide maseter)

Setelah tercopy dengan sempurna klik tombol close Master View
Secara otomatsi semua tombol akan tampil di semua slide, baik yang sudah ada maupun yang baru.
  1. Langkah selanjutnya adalah mematikan fungsi sembarang klik untuk berganti slide. Masuk menu animation – advance slide. Ada 4 cara slide berpindah
    1. On Mouse Klik
    2. Automaticaly after
    3. On Mouse Klik dan Automaticaly after keduanya diaktifkan
    4. Tidak menggunakan On Mouse Click dan Automaticaly after
    Untuk membuat sebuah prensetasi tidak berpindah slide pada saat klik di sembarang tempat, pilih opsi Tidak menggunakan On Mouse Click dan Automaticaly after dengan cara menghilangkan semua centangan pada pilihan on mouse clik maupun automaticly after.
  2. Slide selain berpindah karena klik mouse juga bisa berpindah karena menekan tombol keyboard. Dalam sebuah multimedia pembelajaran interaktif hal tersebut perlu di hindari, matikan dungsi keyboard dalam navigasi slide dengan cara. Klik pada Slide Show – Set Up Show.

    Pada Show Type centang pada Browed at a kiosk (full Screen)
  3. Setelah semua navigasi menggunakan klik mouse dan keyboard dimatikan perlu juga membuat tombol untuk keluar dari slide show power point. buat sebuah tombol, beri action seting. pilih hyperling to End Show.
Setelah Semu langkah di atas di lakukan dengan benar, coba jalankan presentasi. Cek apakah tombol bisa berjalan ke slide yang di tuju, coba klik pada sembarang tempat, seharusnya slide tidak berpindah. Coba jalankan dengan menekan tombol navigasi keyboard, harusnya juga tidak berpindah slide.
Langkah membuat menu adalah langkah awal membuat sebuah multimedia pembelajaran interaktif. Langkah selanjutnya adalah memllih background, menambahkan audio, member animasi serta efeck.

FUNGSI KEYBOARD UNTUK POTOSHOP

Tool-tool photoshop..sambungan

Sambungan dari tool-tool photoshop yang pertama, sekarang ke area ToolBox. Toolbox fungsinya sangat penting karena memudahkan kita. Berikut ini akan dijelaskan mengenai fungsi dari masing-masing tools yang terdapat pada toolbox Adobe Photoshop . Untuk cara penggunaan lebih detil masing-masing tools akan dijelaskan secara terpisah.
toolbox.jpg
A. SELECTION TOOL
  • A.1. Marquee Tool
    Saat kita klik Marquee Tool kita bisa melihat ada 4 jenis marquee tool
    1. Rectangular Marquee (Shortcut keyboard: M, atau Shift + M)
    Digunakan untuk membuat area selection berbentuk segi empat pada image.
    2. Elliptical Marquee (Shortcut keyboard: M, atau Shift + M)
    Digunakan untuk membuat area selection berbentuk elips atau lingkaran pada image.
    3. Single Row Marquee
    Digunakan untuk membuat area selection satu baris pada image (ukuran tinggi selection adalah 1 pixel)
    4. Single Column Marquee
    Digunakan untuk membuat area selection satu kolom pada image (ukuran lebar selection adalah 1 pixel).  
  • A.2. Move Tool
    Shortcut keyboard: V
    Digunakan untuk menggeser/memindah selection, layers, dan guides.
  • A.3. Lasoo Tool
    (Shortcut keyboard: L, atau Shift + L untuk mengubah jenis Lasoo) Terdiri dari 3 jenis yaitu:
    1. Lasoo
    Digunakan untuk membuat area selection dengan bentuk bebas
    2. Polygonal Lasoo
    Digunakan untuk membuat area selection berbentuk polygon
    3. Magnetic Lasoo
    Digunakan untuk membuat area selection dengan cara menempelkan
    tepi selection pada area tertentu pada image.
  • A.4. Magic Wand Tool
    Shortcut keyboard: W
    Digunakan untuk membuat area selection yang memiliki warna serupa.Perbedaan toleransi warna dapat diatur pada tool option bar.
B. CROP & SLICE TOOL
  • B.1. Crop Tool
    Shortcut keyboard: C
    Digunakan untuk memangkas image (memotong dan membuang area tertentu dari image)
    B.2. Slice Tool
    (Shortcut keyboard: K, atau Shift + K untuk mengubah slice)
    Terdiri dari 2 jenis yaitu:
    1. Slice Tool
    Digunakan untuk membuat potongan-potongan dari suatu image
    2. Slice Select Tool
    Digunakan untuk memilih potongan pada suatu image
C. RETOUCHING TOOL
  • C.1. Patch/Healing Brush Tool
    (Shortcut keyboard: J, atau Shift + J mengubah tool)
    1. Patch Tool
    Digunakan untuk mengecat/melukis pada area tertentu image dengan pola (pattern) atau sample tertentu. Cocok untuk memberbaiki image yang rusak.
    2. Healing Brush Tool
    Digunakan untuk mengecat/melukis image dengan pola atau sample tertentu. Cocok untuk memperbaiki image yang agak rusak.
  • C.2. Stamp Tool
    (Shortcut keyboard: S, atau Shift + S untuk mengubah tool) terdiri dari 2 jenis yaitu:
    1. Clone Stamp Tool
    Digunakan untuk melukis image dengan sample image tertentu
    2. Pattern Stamp Tool
    Digunakan untuk melukis image dengan menggunakan pola tertentu
     
  • C.3. Eraser Tool
    (Shortcut keyboard: E, atau Shift + E untuk mengubah jenis eraser)
    Terdiri dari 3 jenis yaitu:
    1. Eraser
    Digunakan untuk menghapus pixel image dan mengembalikannya ke state tertentu.
    2. Background Eraser
    Digunakan untuk menghapus area tertentu image menjadi transparan.
    3. Magic Eraser
    Digunakan untuk menghapus area tertentu image yang memiliki warna yang serupa menjadi transparan dengan satu kali klik.
  • C.4. Sharpen, Blur, Smudge Tool
    (Shortcut keyboard: R, atau Shift + R)
    1. Sharpen Tool
    Digunakan untuk menajamkan area tertentu pada image.
    2. Blur Tool
    Digunakan untuk menghaluskan/mengaburkan area tertentu pada image.
    3. Smudge Tool
    Digunakan untuk menggosok/mencoreng area tertentu pada image
  • C.5. Dodge, Burn, Sponge Tool
    (Shortcut keyboard: O, atau Shift + O)
    1. Dodge Tool
    Digunakan untuk menerangkan warna di area tertentu pada image
    2. Burn Tool
    Digunakan untuk menggelapkan warna di area tertentu pada image
    3. Sponge Tool
    Digunakan untuk mengubah saturation di area tertentu pada image.
D. PAINTING TOOL
  • D.1. Brush Tool
    (Shortcut keyboard: B, atau Shift + B untuk mengubah tool) Terdiri dari 2 jenis yaitu:
    1. Brush Tool
    Digunakan untuk melukis image dengan goresan kuas
    2. Pencil Tool
    Digunakan untuk melukis image dengan goresan pencil
  • D.2. History Brush Tool
    (Shortcut keyboard: Y, atau Shift + Y untuk mengubah jenis)
    Terdiri dari 2 jenis yaitu:
    1. History Brush Tool
    Digunakan untuk melukis image menggunakan snapshot atau state history dari Image
    2. Art History Tool
    Digunakan untuk melukis image menggunakan snapshot atau state
    history dari image, dengan model artistik tertentu. 
  • D.3. Gradient, Paint Bucket Tool
    (Shortcut keyboard: G, atau Shift + G)
    1. Gradient Tool
    Digunakan untuk mengecat area yang dipilih (selected area) dengan
    perpaduan banyak warna.
    2. Paint Bucket Tool
    Digunakan untuk mengecat area yang dipilih dengan warna foreground
    atau pola tertentu.
E. DRAWING AND TYPE TOOL
  1. E.1. Selection Tool
    (Shortcut keyboard: A, atau Shift + A untuk mengubah jenis) Terdiri dari 2 jenis yaitu:
    1. Path Selection Tool
    Digunakan untuk melakukan selection path
    2. Direct Selection Tool
    Digunakan untuk mengubah anchor dan direction point dari path.
    E.2. Type Tool
    (Shortcut keyboard: T, atau Shift + T untuk mengubah jenis) Terdiri dari 4 jenis yaitu:
    1. Horizontal Type Tool
    Digunakan untuk membuat tulisan secara horizontal
    2. Vertical Type Tool
    Digunakan untuk membuat tulisan secara vertikal
    3. Horizontal Type Mask Tool
    Digunakan untuk membuat selection berbentuk tulisan secara horizontal
    4. Vertical Type Mask Tool
    Digunakan untuk membuat selection berbentuk tulisan secara vertikal
  2. E.3. Pen Tool
    1. Pen Tool
    (Shortcut keyboard: P, atau Shift + P)
    Digunakan untuk membuat path dengan lengkung-lengkung yang halus
    2. Freeform Pen Tool
    (Shortcut keyboard: P, atau Shift + P)
    Digunakan untuk membuat path berbentuk bebas (sesuka kita )
    3. Add Anchor Point Tool
    Digunakan untuk menambah anchor point atau titik editor pada path
    4. Delete Anchor Point Tool
    Digunakan untuk menghapus anchor point tertentu pada path  
5. Convert Point Tool
Digunakan untuk mengubah anchor dan direction point tertentu pada path
  • E.4. Shape Tool
    (Shortcut keyboard: U, atau Shift + U untuk mengubah jenis)
    1. Rectangle Tool
    Digunakan untuk menggambar bentuk segi empat
    2. Rounded Rectangle Tool
    Digunakan untuk menggambar segi empat melengkung
    3. Ellipse Tool
    Digunakan untuk menggambar ellipse
    4. Polygon Tool
    Digunakan untuk menggambar polygon
    5. Line Tool
    Digunakan untuk menggambar garis lurus
    6. Custom Shape Tool
    Digunakan untuk menggambar bentuk tertentu dari daftar bentuk yang ada
F. ANNOTATION, MEASURING & NAVIGATION TOOL
  • F.1. Notes Tool
    (Shortcut keyboard: N, atau Shift + N untuk mengubah jenis)
    1. Notes Tool
    Digunakan untuk membuat catatan pada image seperti copyright.
    2. Audio AnnotationTool
    Digunakan untuk membuat suara/audio pada image
  • F.2. Eyedropper, Measure Tool
    (Shortcut keyboard: I, atau Shift + I)
    1. Eyedropper Tool
    Digunakan untuk mengambil sample warna pada image untuk warna
    foreground
    2. Color Sampler Tool
    Digunakan untuk mengambil berbagai sample warna pada image
    3. Measure Tool
    Digunakan untuk mengukur jarak atau sudut pada image
  • F.3. Hand Tool
    Shortcut keyboard: H
    Digunakan untuk menggeser/memindah bidang pandang image di dalam window view area.
  • F.4. Zoom Tool
    Shortcut keyboard: Z
    Digunakan untuk memperbesar atau memperkecil tampilan image.
  • F.5. Background and foreground color
    Supaya default tekan tombol D maka warna foreground dan background menjadi putih dan hitam. Untuk menukar warna background dan foreground tekan tombol X.
  • F.6. Normal and Quickmask Mode
    Normal Mode : Semua fungsi seperti brush akan berjalan seperti biasanya. Quickmask Mode : fungsi brush bisa dipakai untuk seleksi cuman jika setelah proses quickmask maka yang diseleksi malah dibagian luar nya.
  • F.7. Screen Mode
    Untuk melihat tampilan area kerja windows.

FUNGSI KEYBOARD UNTUK Ms EXEL

Struktur dan Fungsi Tombol Keyboard

asus-eee-keyboard-449x402-300x268Dalam postingan kali ini akan dijelaskan struktur tombol keyboard. Dari sisi tombol yang digunakan, keyboard memiliki perkembangan yang tidak terlalu pesat sejak ditemukan pertama kali. Yang terjadi hanyalah penambahan-penambahan beberapa tombol bantu yang lebih mempercepat pembukaan aplikasi program.
Secara umum, struktur tombol pada keyboard terbagi atas 4, yaitu:

1. Tombol Ketik (typing keys)

Tombol ketik adalah salah satu bagian dari keyboard yang berisi huruf dan angka serta tanda baca. Secara umum, ada 2 jenis susunan huruf pada keyboard, yaitu tipe QWERTY dan DVORAK. Namun, yang terbanyak digunakan sampai saat ini adalah susunan QWERTY.
2. Numeric Keypad
Numeric keypad merupakan bagian khusus dari keyboard yang berisi angka dan sangat berfungsi untuk memasukkan data berupa angka dan operasi perhitungan. Struktur angkanya disusun menyerupai kalkulator dan alat hitung lainnya.

3. Tombol Fungsi (Function Keys)

Tahun 1986, IBM menambahkan beberapa tombol fungsi pada keyboard standard. Tombol ini dapat dipergunakan sebagai perintah khusus yang disertakan pada sistem operasi maupun aplikasi.
4. Tombol kontrol (Control keys)
Tombol ini menyediakan kontrol terhadap kursor dan layar. Tombol yang termasuk dalam kategori ini adalah 4 tombol bersimbol panah di antara tombol ketik dan numeric keypad, home, end, insert, delete, page up, page down, control (ctrl), alternate (alt) dan escape (esc).

Gbr. Struktur Tombol Keyboard
Oleh karena itu, dalam postingan kali ini juga dijelaskan fungsi dari setiap tombol keyboard yang ada, diantaranya :

  1. Tombol ALT berfungsi bila penggunaannya dipasangkan dengan tombol lainnya seperti F4 misalnya yang berguna untuk ShutDown atau menutup Windows Program yang sedang aktif.
  2. Tombol CTRL akan berfungsi bila penggunaannya dipasangkan dengan tombol lainnya seperti tombol C atau disebut juga CTRL-C akan berguna untuk menyalin saatu objek yang ditunjuk ke dalam clipboard, yang nantinya dapat disalinkan pada area kerja yang ditentukan dengan menggunakan CTRL-V.
  3. Tombol F1 – F12 adalah tombol fungsi yang pemanfaatannya disesuaikan dengan sistem operasi atau aplikasi. Misal, F1 biasanya digunakan untuk menampilkan menu Help yang akan memberikan penjelasan mengenai aplikasi yang sedang berjalan
  4. Tombol ESC (Escape) adalah tombol yang kegunaanya sama dengan pilihan CANCEL, yaitu untuk membatalkan satu tahap pekerjaan.
  5. Tombol Enter adalah tombol yang kegunaanya sama dengan pilihan tombol OK, yaitu untuk menyatakan bahwa operasi yang dilakukan betul dan selesai. Enter juga dapat berarti menyisipkan baris kosong atau baris baru pada proses pemasukan text.
  6. Pada Window dialog, menekan tombol TAB berarti pindah ke field atau daerah isian atau pilihan berikutnya. Pada saat proses pengetikan, TAB berarti lompat ke penghentian TAB (tab-stop) terdekat.
  7. Tombol Arah berfungsi menggerakan penunjuk karakter (kursor) sesuai arah anak panah bersangkutan.
  8. Berguna pada saat proses pengetikan. Menekan tombol Backspace akan mengakibatkan karakter (huruf) disebelah kiri kursor terhapus.
  9. Berguna pada saat proses pengetikan. Menekan tombol Delete akan mengakibatkan karakter(huruf) disebelah kanan atau ditempat dimana kursor berada akan terhapus.
  10. Berguna pada saat proses pengetikan. Menekan tombol Home akan mengakibatkan kursor berpindah ke awal baris dimana kursor berada.
  11. Berguna pada saat proses pengetikan. Menekan tombol End akan mengakibatkan kursor berpindah ke akhir baris dimana kursor berada.
  12. Berguna pada saat proses pengetikan. Menekan tombol Page Up akan mengakibatkan kursor berpindah ke atas sejauh satu layar dari kursor berada.
  13. Berguna pada saat proses pengetikan. Menekan tombol Page Down akan mengakibatkan kursor berpindah ke bawah sejauh satu layar dari kursor berada.
fungsi tombol secara khusus pada pengunaa browser adalah sebagai berikut:
Ctrl A :Memblok keseluruhan.
Ctrl C :Menambah alamat halaman web yang sedang dibuka ke favorites.
Ctrl E :Menampilkan/menyembunyikan search.
Ctrl F :Mencari halaman web.
Ctrl H :Menampakan/menyembunyikan history.
Ctrl I :Menampilkan/menyembunyikan faforites.
Ctrl O :Menampilkan kotak dialog open.
Ctrl P :Mencetak halaman web yang sedang dibuka.
Ctrl R :Merefresh galaman web terbaru.
Ctrl V :Mem paste isi clipboard.
Ctrl W :Keluar dari amplikasi dan menutup jendela.
Ctrl X :Memotong blok terpilih.
Ctrl Z :Membatalkan perintah dan menutup jenjdela.
F1 :Fasilitas help.
F3 :Memunculkan/menghilangkan bar search explorer.
F4:Daftar drop down dari kotak address.
F5 :Merefres halaman web yang aktif.
F10 :Mengarahkan fokus ke menu bar.

FUNGSI KEYBOARD UNTUK Ms WORD



1. Ctrl + 2 = Membuat line spacing atau baris yang diblok menjadi double
2 Ctrl + 1 = Mengembalikan line spacing double ke seperti semula
3 Ctrl + + = Membuat kalimat pada naskah yang diblok menjadi kecil
4. Ctrl + Shift + 8 = Membuat tanda enter
5. Ctrl + Alt + 1 = Membuat kalimat menjadi tercetak lebih besar ukuran hurupnya.
6. Ctrl + Alt + 2 = Membuat kalimat menjadi tercetak miring dan lebih besar ukuran hurupnya.



7. Ctrl + Alt + 3 = Mengembalikan ke seperti semula.
8. Ctrl + A = Memblok semua naskah
9. Ctrl + B = Membuat kalimat yang diblok menjadi tercetak tebal
10. Ctrl + C = Untuk mengcopy sebuah kata atau kalimat.
11. Ctrl + D = Menampilkan Form ukuran Font
12. Ctrl + E = Membuat kalimat yang diblok menjadi rata ketengah
13. Ctrl + F = Menampilkan Form untuk kolom pencarian
14. Ctrl + G = Menampilkan Form Find and Replace go to
15. Ctrl + H = Menampilkan Form Replace
16. Ctrl + I = Membuat hurup menjadi tercetak miring
17. Ctrl + K = Menampilkan Form Insert Hyperlink
18. Ctrl + L = Membuat naskah menjadi rata kiri
19. Ctrl + M = Membuat left indent menjadi menjorok kedalam sedikit.
20. Ctrl + N = Membuat halaman baru.

21. Ctrl + O = Membuka file
22. Ctrl + P = Menampilkan menu print
23. Ctrl + R = Menampilkan kalimat yang diblok menjadi rata kanan
24. Ctrl + Q = Mengembalikan kesemula
25. Ctrl + S = Untuk menyimpan naskah
26. Ctrl + T = Membuat hanging indent
27. Ctrl + U = Membuat garis bawah pada kalimat yang diblok
28. Ctrl + V = Menampilkan kata atau kalimat yang dicopy
29. Ctrl + W = Menutup layar Microsoft word
30. Ctrl + Z = Mengembalikan kesemula
31. Ctrl + F1 = Menampilkan form Getting started
32. Ctrl + F2 = Menampilkan bentuk naskah dalam kertas sebelum dicetak ke printer
33. Ctrl + F4 = Menutup sebuah document dan kembali kedokument sebelumnya jika anda bekerja dengan beberapa document
34. Ctrl + F5 = Mebuat layar Microsoft Word menjadi ukuran sedang
35. Ctrl + F6= Membuat layar menjadi minimize
36. Ctrl + F9 = Membuat muka kurung dan tutup kurung
37. Ctrl + F10 = Membuat restore down dan maximize
38. Ctrl + F12 = Menampilkan menu Open
39. Ctrl + 0 = membuat langkah kebawah
40. Ctrl + Shift + + = Menampilkan hurup yang diblok menjadi keatas
41. Alt + R = Menampilkan dalam bentuk cetakan atau print preview

Rabu, 28 Desember 2011

Fisika Tanah

Fisika tanah

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Fisika tanah adalah cabang dari ilmu tanah yang membahas sifat-sifat fisik tanah, pengukuran dan prediksi serta kontrol (pengaturan) proses fisika yang terjadi dalam tanah. Karena pengertian fisika meliputi materi dan energi, maka fisika tanah membahas pula status dan pergerakan material serta aliran dan transformasi energi dalam tanah.
Tujuan Fisika tanah dapat dilihat dari 2 sisi:
  • Dalam satu sisi, tujuan kajian fisika tanah adalah untuk memberikan pemahaman dasar tentang mekanisme pengaturan perilaku (fisika dan kimiawi) tanah, serta perannya dalam biosfer, termasuk proses saling hubungan dalam pertukaran energi di dalam tanah, serta siklus air dan material yang dapat diangkutnya.
  • Pada sisi lainnya, pemahaman fisika tanah dapat digunakan sebagai asas untuk manajemen sumberdaya tanah dan air, termasuk kegiatan irigasi, drainasi, konservasi tanah dan air, pengolahan tanah dan konstruksi.
Oleh karena itu fisika tanah dapat dipandang sebagai ilmu dasar sekaligus terapan dengan melibatkan berbagai cabang ilmu yang lain termasuk ilmu tanah, hidrologi, klimatolologi, ekologi, geologi, sedimentologi, botani dan agronomi.
Fisika tanah juga erat kaitannya dengan mekanika tanah, dinamika tanah dan teknik sipil.
Area penelitian fisika tanah dapat mencakup:
  • Pengukuran dan kuantifikasi sifat fisik tanah di lapangan
  • Transportasi materi dan energi (berupa air, udara, panas) di dalam tanah
  • Manajemen air untuk irigasi

IKATAN KIMIA

Ikatan kimia

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Ikatan kimia adalah sebuah proses fisika yang bertanggung jawab dalam interaksi gaya tarik menarik antara dua atom atau molekul yang menyebabkan suatu senyawa diatomik atau poliatomik menjadi stabil. Penjelasan mengenai gaya tarik menarik ini sangatlah rumit dan dijelaskan oleh elektrodinamika kuantum. Dalam prakteknya, para kimiawan biasanya bergantung pada teori kuantum atau penjelasan kualitatif yang kurang kaku (namun lebih mudah untuk dijelaskan) dalam menjelaskan ikatan kimia. Secara umum, ikatan kimia yang kuat diasosiasikan dengan transfer elektron antara dua atom yang berpartisipasi. Ikatan kimia menjaga molekul-molekul, kristal, dan gas-gas diatomik untuk tetap bersama. Selain itu ikatan kimia juga menentukan struktur suatu zat.
Kekuatan ikatan-ikatan kimia sangatlah bervariasi. Pada umumnya, ikatan kovalen dan ikatan ion dianggap sebagai ikatan "kuat", sedangkan ikatan hidrogen dan ikatan van der Waals dianggap sebagai ikatan "lemah". Hal yang perlu diperhatikan adalah bahwa ikatan "lemah" yang paling kuat dapat lebih kuat daripada ikatan "kuat" yang paling lemah.
Contoh model titik Lewis yang menggambarkan ikatan kimia anatara karbon C, hidrogen H, dan oksigen O. Penggambaran titik lewis adalah salah satu dari usaha awal kimiawan dalam menjelaskan ikatan kimia dan masih digunakan secara luas sampai sekarang.

Daftar isi

 [sembunyikan

[sunting] Tinjauan

Elektron yang mengelilingi inti atom bermuatan negatif dan proton yang terdapat dalam inti atom bermuatan positif, mengingat muatan yang berlawanan akan saling tarik menarik, maka dua atom yang berdekatan satu sama lainnya akan membentuk ikatan.
Dalam gambaran yang paling sederhana dari ikatan non-polar atau ikatan kovalen, satu atau lebih elektron, biasanya berpasangan, ditarik menuju sebuah wilayah di antara dua inti atom. Gaya ini dapat mengatasi gaya tolak menolak antara dua inti atom yang positif, sehingga atraksi ini menjaga kedua atom untuk tetap bersama, walaupun keduanya masih akan tetap bergetar dalam keadaan kesetimbangan. Ringkasnya, ikatan kovalen melibatkan elektron-elektron yang dikongsi dan dua atau lebih inti atom yang bermuatan positif secara bersamaan menarik elektron-elektron bermuatan negatif yang dikongsi.
Dalam gambaran ikatan ion yang disederhanakan, inti atom yang bermuatan positif secara dominan melebihi muatan positif inti atom lainnya, sehingga secara efektif menyebabkan satu atom mentransfer elektronnya ke atom yang lain. Hal ini menyebabkan satu atom bermuatan positif dan yang lainnya bermuatan negatif secara keseluruhan. Ikatan ini dihasilkan dari atraksi elektrostatik di antara atom-atom dan atom-atom tersebut menjadi ion-ion yang bermuatan.
Semua bentuk ikatan dapat dijelaskan dengan teori kuantum, namun dalam prakteknya, kaidah-kaidah yang disederhanakan mengijinkan para kimiawan untuk memprediksikan kekuatan, arah, dan polaritas sebuah ikatan. Kaidah oktet (Bahasa Inggris: octet rule) dan teori VSEPR adalah dua contoh kaidah yang disederhanakan tersebut. Ada pula teori-teori yang lebih canggih, yaitu teori ikatan valens yang meliputi hibridisasi orbital dan resonans, dan metode orbital molekul kombinasi linear orbital atom (Bahasa Inggris: Linear combination of atomic orbitals molecular orbital method) yang meliputi teori medan ligan. Elektrostatika digunakan untuk menjelaskan polaritas ikatan dan efek-efeknya terhadap zat-zat kimia.

[sunting] Sejarah

Spekulasi awal dari sifat-sifat ikatan kimia yang berawal dari abad ke-12 mengganggap spesi kimia tertentu disatukan oleh sejenis afinitas kimia. Pada tahun 1704, Isaac Newton menggarisbesarkan teori ikatan atomnya pada "Query 31" buku Opticksnya dengan mengatakan atom-atom disatukan satu sama lain oleh "gaya" tertentu.
Pada tahun 1819, setelah penemuan tumpukan volta, Jöns Jakob Berzelius mengembangkan sebuah teori kombinasi kimia yang menekankan sifat-sifat elektrogenativitas dan elektropositif dari atom-atom yang bergabung. Pada pertengahan abad ke-19 Edward Frankland, F.A. Kekule, A.S. Couper, A.M. Butlerov, dan Hermann Kolbe, beranjak pada teori radikal, mengembangkan teori valensi yang pada awalnya disebut "kekuatan penggabung". Teori ini mengatakan sebuah senyawa tergabung berdasarkan atraksi kutub positif dan kutub negatif. Pada tahun 1916, kimiawan Gilbert N. Lewis mengembangkan konsep ikatan elektron berpasangan. Konsep ini mengatakan dua atom dapat berkongsi satu sampai enam elektron, membentuk ikatan elektron tunggal, ikatan tunggal, ikatan rangkap dua, atau ikatan rangkap tiga.
Lewis-bond.jpg
Dalam kata-kata Lewis sendiri:
An electron may form a part of the shell of two different atoms and cannot be said to belong to either one exclusively.
Pada tahun yang sama, Walther Kossel juga mengajukan sebuah teori yang mirip dengan teori Lewis, namun model teorinya mengasumsikan transfer elektron yang penuh antara atom-atom. Teori ini merupakan model ikatan polar. Baik Lewis dan Kossel membangun model ikatan mereka berdasarkan kaidah Abegg (1904).
Pada tahun 1927, untuk pertama kalinya penjelasan matematika kuantum yang penuh atas ikatan kimia yang sederhana berhasil diturunkan oleh fisikawan Denmark Oyvind Burrau.[1] Hasil kerja ini menunjukkan bahwa pendekatan kuantum terhadap ikatan kimia dapat secara mendasar dan kuantitatif tepat. Namun metode ini tidak mampu dikembangkan lebih jauh untuk menjelaskan molekul yang memiliki lebih dari satu elektron. Pendekatan yang lebih praktis namun kurang kuantitatif dikembangkan pada tahun yang sama oleh Walter Heitler and Fritz London. Metode Heitler-London menjadi dasar dari teori ikatan valensi. Pada tahun 1929, metode orbital molekul kombinasi linear orbital atom (Bahasa Inggris: linear combination of atomic orbitals molecular orbital method), disingkat LCAO, diperkenalkan oleh Sir John Lennard-Jones yang bertujuan menurunkan struktur elektronik dari molekul F2 (fluorin) dan O2 (oksigen) berdasarkan prinsip-prinsip dasar kuantum. Teori orbital molekul ini mewakilkan ikatan kovalen sebagai orbital yang dibentuk oleh orbital-orbital atom mekanika kuantum Schrödinger yang telah dihipotesiskan untuk atom berelektron tunggal. Persamaan ikatan elektron pada multielektron tidak dapat diselesaikan secara analitik, namun dapat dilakukan pendekatan yang memberikan hasil dan prediksi yang secara kualitatif cukup baik. Kebanyakan perhitungan kuantitatif pada kimia kuantum modern menggunakan baik teori ikatan valensi maupun teori orbital molekul sebagai titik awal, walaupun pendekatan ketiga, teori fungsional rapatan (Bahasa Inggris: density functional theory), mulai mendapatkan perhatian yang lebih akhir-akhir ini.
Pada tahun 1935, H. H. James dan A. S. Coolidge melakukan perhitungan pada molekul dihidrogen.Berbeda dengan perhitungan-perhitungan sebelumnya yang hanya menggunakan fungsi-fungsi jarak antara elektron dengan inti atom, mereka juga menggunakan fungsi yang secara eksplisit memperhitungkan jarak antara dua elektron.[2] Dengan 13 parameter yang dapat diatur, mereka mendapatkan hasil yang sangat mendekati hasil yang didapatkan secara eksperimen dalam hal energi disosiasi. Perluasan selanjutnya menggunakan 54 parameter dan memberikan hasil yang sangat sesuai denganhasil eksperimen. Perhitungan ini meyakinkan komunitas sains bahwa teori kuantum dapat memberikan hasil yang sesuai dengan hasil eksperimen. Namun pendekatan ini tidak dapat memberikan gambaran fisik seperti yang terdapat pada teori ikatan valensi dan teori orbital molekul. Selain itu, ia juga sangat sulit diperluas untuk perhitungan molekul-molekul yang lebih besar.

[sunting] Teori ikatan valensi

Pada tahun 1927, teori ikatan valensi dikembangkan atas dasar argumen bahwa sebuah ikatan kimia terbentuk ketika dua valensi elektron bekerja dan menjaga dua inti atom bersama oleh karena efek penurunan energi sistem. Pada tahun 1931, beranjak dari teori ini, kimawan Linus Pauling mempublikasikan jurnal ilmiah yang dianggap sebagai jurnal paling penting dalam sejarah kimia: "On the Nature of the Chemical Bond". Dalam jurnal ini, berdasarkan hasil kerja Lewis dan teori valensi ikatan Heitler dan London, dia mewakilkan enam aturan pada ikatan elektron berpasangan:
1. Ikatan elektron berpasangan terbentuk melalui interaksi elektron tak-berpasangan pada masing-masing atom.
2. Spin-spin elektron haruslah saling berlawanan.
3. Seketika dipasangkan, dua elektron tidak bisa berpartisipasi lagi pada ikatan lainnya.
4. Pertukaran elektron pada ikatan hanya melibatkan satu persamaan gelombang untuk setiap atom.
5. Elektron-elektron yang tersedia pada aras energi yang paling rendah akan membentuk ikatan-ikatan yang paling kuat.
6. Dari dua orbital pada sebuah atom, salah satu yang dapat bertumpang tindih paling banyaklah yang akan membentuk ikatan paling kuat, dan ikatan ini akan cenderung berada pada arah orbital yang terkonsentrasi.
Buku teks tahun 1939 Pauling: On the Nature of Chemical Bond menjadi apa yang banyak orang sebut sebagai "kitab suci" kimia modern. Buku ini membantu kimiawan eksperimental untuk memahami dampak teori kuantum pada kimia. Namun, edisi 1959 selanjutnya gagal untuk mengalamatkan masalah yang lebih mudah dimengerti menggunakan teori orbital molekul. Dampak dari teori valensi ini berkurang sekitar tahun 1960-an dan 1970-an ketika popularitas teori orbital molekul meningkat dan diimplementasikan pada beberapa progam komputer yang besar. Sejak tahun 1980-an, masalah implementasi teori ikatan valensi yang lebih sulit pada program-program komputer telah hampir dipecahkan dan teori ini beranjak bangkit kembali.

[sunting] Teori orbital molekul

Teori orbital molekul (Bahasa Inggris: Molecular orbital tehory), disingkat MO, menggunakan kombinasi linear orbital-orbital atom untuk membentuk orbital-orbital molekul yang menrangkumi seluruh molekul. Semuanya ini seringkali dibagi menjadi orbital ikat, orbital antiikat, dan orbital bukan-ikatan. Orbital molekul hanyalah sebuah orbital Schrödinger yang melibatkan beberapa inti atom. Jika orbital ini merupakan tipe orbital yang elektron-elektronnya memiliki kebolehjadian lebih tinggi berada di antara dua inti daripada di lokasi lainnya, maka orbital ini adalah orbital ikat dan akan cenderung menjaga kedua inti bersama. Jika elektron-elektron cenderung berada di orbital molekul yang berada di lokasi lainnya, maka orbital ini adalah orbital antiikat dan akan melemahkan ikatan. Elektron-elektron yang berada pada orbital bukan-ikatan cenderung berada pada orbital yang paling dalam (hampir sama dengan orbital atom), dan diasosiasikan secara keseluruhan pada satu inti. Elektron-elektron ini tidak menguatkan maupun melemahkan kekuatan ikatan.

[sunting] Perbandingan antara teori ikatan valensi dan teori orbital molekul

Pada beberapa bidang, teori ikatan valensi lebih baik daripada teori orbital molekul. Ketika diaplikasikan pada molekul berelektron dua, H2, teori ikatan valensi, bahkan dengan pendekatan Heitler-London yang paling sederhana, memberikan pendekatan energi ikatan yang lebih dekat dan representasi yang lebih akurat pada tingkah laku elektron ketika ikatan kimia terbentuk dan terputus. Sebaliknya, teori orbital molekul memprediksikan bahwa molekul hidrogen akan berdisosiasi menjadi superposisi linear dari hidrogen atom dan ion hidrogen positif dan negatif. Prediksi ini tidak sesuai dengan gambaran fisik. Hal ini secara sebagian menjelaskan mengapa kurva energi total terhadap jarak antar atom pada metode ikatan valensi berada di atas kurva yang menggunakan metode orbital molekul. Situasi ini terjadi pada semua molekul diatomik homonuklir dan tampak dengan jelas pada F2 ketika energi minimum pada kurva yang menggunakan teori orbital molekul masih lebih tinggi dari energi dua atom F.
Konsep hibridisasi sangatlah berguna dan variabilitas pada ikatan di kebanyakan senyawa organik sangatlah rendah, menyebabkan teori ini masih menjadi bagian yang tak terpisahkan dari kimia organik. Namun, hasil kerja Friedrich Hund, Robert Mulliken, dan Gerhard Herzberg menunjukkan bahwa teori orbital molekul memberikan deskripsi yang lebih tepat pada spektrokopi, ionisasi, dan sifat-sifat magnetik molekul. Kekurangan teori ikatan valensi menjadi lebih jelas pada molekul yang berhipervalensi (contohnya PF5) ketika molekul ini dijelaskan tanpa menggunakan orbital-orbital d yang sangat krusial dalam hibridisasi ikatan yang diajukan oleh Pauling. Logam kompleks dan senyawa yang kurang elektron (seperti diborana) dijelaskan dengan sangat baik oleh teori orbital molekul, walaupun penjelasan yang menggunakan teori ikatan valensi juga telah dibuat.
Pada tahun 1930, dua metode ini saling bersaing sampai disadari bahwa keduanya hanyalah merupakan pendekatan pada teori yang lebih baik. Jika kita mengambil struktur ikatan valensi yang sederhana dan menggabungkan semua struktur kovalen dan ion yang dimungkinkan pada sekelompok orbital atom, kita mendapatkan apa yang disebut sebagai fungsi gelombang interaksi konfigurasi penuh. Jika kita mengambil deskripsi orbital molekul sederhana pada keadaan dasar dan mengkombinasikan fungsi tersebut dengan fungsi-fungsi yang mendeskripsikan keseluruhan kemungkinan keadaan tereksitasi yang menggunakan orbital tak terisi dari sekelompok orbital atom yang sama, kita juga mendapatkan fungsi gelombang interaksi konfigurasi penuh. Terlihatlah bahwa pendekatan orbital molekul yang sederhana terlalu menitikberatkan pada struktur ion, sedangkan pendekatan teori valensi ikatan yang sederhana terlalu sedikit menitikberatkan pada struktur ion. Dapat kita katakan bahwa pendekatan orbital molekul terlalu ter-delokalisasi, sedangkan pendekatan ikatan valensi terlalu ter-lokalisasi.
Sekarang kedua pendekatan tersebut dianggap sebagai saling memenuhi, masing-masing memberikan pandangannya sendiri terhadap masalah-masalah pada ikatan kimia. Perhitungan modern pada kimia kuantum biasanya dimulai dari (namun pada akhirnya menjauh) pendekatan orbital molekul daripada pendekatan ikatan valensi. Ini bukanlah karena pendekatan orbital molekul lebih akurat dari pendekatan teori ikatan valensi, melainkan karena pendekatan orbital molekul lebih memudahkan untuk diubah menjadi perhitungan numeris. Namun program-progam ikatan valensi yang lebih baik juga tersedia.

[sunting] Ikatan dalam rumus kimia

Bentuk atom-atom dan molekul-molekul yang 3 dimensi sangatlah menyulitkan dalam menggunakan teknik tunggal yang mengindikasikan orbital-orbital dan ikatan-ikatan. Pada rumus molekul, ikatan kimia (orbital yang berikatan) diindikasikan menggunakan beberapa metode yang bebeda tergantung pada tipe diskusi. Kadang-kadang kesemuaannya dihiraukan. Sebagai contoh, pada kimia organik, kimiawan biasanya hanya peduli pada gugus fungsi molekul. Oleh karena itu, rumus molekul etanol dapat ditulis secara konformasi, 3-dimensi, 2-dimensi penuh (tanpa indikasi arah ikatan 3-dimensi), 2-dimensi yang disingkat (CH3–CH2–OH), memisahkan gugus fungsi dari bagian molekul lainnnya (C2H5OH), atau hanya dengan konstituen atomnya saja (C2H6O). Kadangkala, bahkan kelopak valensi elektron non-ikatan (dengan pendekatan arah yang digambarkan secara 2-dimensi) juga ditandai. Beberapa kimiawan juga menandai orbital-orbital atom, sebagai contoh anion etena−4 yang dihipotesiskan (\/C=C/\ −4) mengindikasikan kemungkinan pembentukan ikatan.sehingga terjadi ikatan rangkap dua antara banci2 dgn germo.wkwkwk iya kan gan...

[sunting] Ikatan kuat kimia

Panjang ikat dalam pm
dan energi ikat dalam kJ/mol.

Panjang ikat dapat dikonversikan menjadi Å
dengan pembagian dengan 100 (1 Å = 100 pm).
Data diambil dari [1].
Ikatan Panjang
(pm)
Energi
(kJ/mol)
H — Hidrogen
H–H 74 436
H–C 109 413
H–N 101 391
H–O 96 366
H–F 92 568
H–Cl 127 432
H–Br 141 366
C — Karbon
C–H 109 413
C–C 154 348
C=C 134 614
C≡C 120 839
C–N 147 308
C–O 143 360
C–F 135 488
C–Cl 177 330
C–Br 194 288
C–I 214 216
C–S 182 272
N — Nitrogen
N–H 101 391
N–C 147 308
N–N 145 170
N≡N 110 945
O — Oksigen
O–H 96 366
O–C 143 360
O–O 148 145
O=O 121 498
F, Cl, Br, I — Halogen
F–H 92 568
F–F 142 158
F–C 135 488
Cl–H 127 432
Cl–C 177 330
Cl–Cl 199 243
Br–H 141 366
Br–C 194 288
Br–Br 228 193
I–H 161 298
I–C 214 216
I–I 267 151
S — Belerang
C–S 182 272
Ikatan-ikatan berikut adalah ikatan intramolekul yang mengikat atom-atom bersama menjadi molekul. Dalam pandangan yang sederhana dan terlokalisasikan, jumlah elektron yang berpartisipasi dalam suatu ikatan biasanya merupakan perkalian dari dua, empat, atau enam. Jumlah yang berangka genap umumnya dijumpai karena elektron akan memiliki keadaan energi yang lebih rendah jika berpasangan. Teori-teori ikatan yang lebih canggih menunjukkan bahwa kekuatan ikatan tidaklah selalu berupa angka bulat dan tergantung pada distribusi elektron pada setiap atom yang terlibat dalam sebuah ikatan. Sebagai contohnya, karbon-karbon dalam senyawa benzena dihubungkan satu sama lain oleh ikatan 1.5 dan dua atom dalam nitrogen monoksida NO dihubungkan oleh ikatan 2,5. Keberadaan ikatan rangkap empat juga diketahui dengan baik. Jenis-jenis ikatan kuat bergantung pada perbedaan elektronegativitas dan distribusi orbital elektron yang tertarik pada suatu atom yang terlibat dalam ikatan. Semakin besar perbedaan elektronegativitasnya, semakin besar elektron-elektron tersebut tertarik pada atom yang berikat dan semakin bersifat ion pula ikatan tersebut. Semakin kecil perbedaan elektronegativitasnya, semakin bersifat kovalen ikatan tersebut.

[sunting] Ikatan kovalen

Ikatan kovalen adalah ikatan yang umumnya sering dijumpai, yaitu ikatan yang perbedaan elektronegativitas (negatif dan positif) di antara atom-atom yang berikat sangatlah kecil atau hampir tidak ada. Ikatan-ikatan yang terdapat pada kebanyakan senyawa organik dapat dikatakan sebagai ikatan kovalen. Lihat pula ikatan sigma dan ikatan pi untuk penjelasan LCAO terhadap jenis ikatan ini.

[sunting] Ikatan polar kovalen

Ikatan polar kovalen merupakan ikatan yang sifat-sifatnya berada di antara ikatan kovalen dan ikatan ion.

[sunting] Ikatan ion

Ikatan ion merupakan sejenis interaksi elektrostatik antara dua atom yang memiliki perbedaan elektronegativitas yang besar. Tidaklah terdapat nilai-nilai yang pasti yang membedakan ikatan ion dan ikatan kovalen, namun perbedaan elektronegativitas yang lebih besar dari 2,0 bisanya disebut ikatan ion, sedangkan perbedaan yang lebih kecil dari 1,5 biasanya disebut ikatan kovalen.[3] Ikatan ion menghasilkan ion-ion positif dan negatif yang berpisah. Muatan-muatan ion ini umumnya berkisar antara -3 e sampai dengan +3e.

[sunting] Ikatan kovalen koordinat

Ikatan kovalen koordinat, kadangkala disebut sebagai ikatan datif, adalah sejenis ikatan kovalen yang keseluruhan elektron-elektron ikatannya hanya berasal dari salah satu atom, penderma pasangan elektron, ataupun basa Lewis. Konsep ini mulai ditinggalkan oleh para kimiawan seiring dengan berkembangnya teori orbital molekul. Contoh ikatan kovalen koordinat terjadi pada nitron dan ammonia borana. Susunan ikatan ini berbeda dengan ikatan ion pada perbedaan elektronegativitasnya yang kecil, sehingga menghasilkan ikatan yang kovalen. Ikatan ini biasanya ditandai dengan tanda panah. Ujung panah ini menunjuk pada akseptor elektron atau asam Lewis dan ekor panah menunjuk pada penderma elektron atau basa Lewis

[sunting] Ikatan pisang

Ikatan pisang adalah sejenis ikatan yang terdapat pada molekul-molekul yang mengalami terikan ataupun yang mendapat rintangan sterik, sehingga orbital-orbital ikatan tersebut dipaksa membentuk struktur ikatan yang mirip dengan pisang. Ikatan pisang biasanya lebih rentan mengalami reaksi daripada ikatan-ikatan normal lainnya.

[sunting] Ikatan 3c-2e dan 3c-4e

Dalam ikatan tiga-pusat dua-elektron, tiga atom saling berbagi dua elektron. Ikatan sejenis ini terjadi pada senyawa yang kekurangan elektron seperti pada diborana. Setiap ikatan mengandung sepasang elektron yang menghubungkan atom boron satu sama lainnya dalam bentuk pisang dengan sebuah proton (inti atom hidrogen) di tengah-tengah ikatan, dan berbagi elektron dengan kedua atom boron. Terdapat pula Ikatan tiga-pusat empat-elektron yang menjelaskan ikatan pada molekul hipervalen.

[sunting] Ikatan tiga elektron dan satu elektron

Ikatan-ikatan dengan satu atau tiga elektron dapat ditemukan pada spesi radikal yang memiliki jumlah elektron gasal (ganjil). Contoh paling sederhana dari ikatan satu elektron dapat ditemukan pada kation molekul hidrogen H2+. Ikatan satu elektron seringkali memiliki energi ikat yang setengah kali dari ikatan dua elektron, sehingga ikatan ini disebut pula "ikatan setengah". Namun terdapat pengecualian pada kasus dilitium. Ikatan dilitium satu elektron, Li2+, lebih kuat dari ikatan dilitium dua elektron Li2. Pengecualian ini dapat dijelaskan dengan hibridisasi dan efek kelopak dalam. [4]
Contoh sederhana dari ikatan tiga elektron dapat ditemukan pada kation dimer helium, He2+, dan dapat pula dianggap sebagai "ikatan setengah" karena menurut teori orbital molekul, elektron ke-tiganya merupakan orbital antiikat yang melemahkan ikatan dua elektron lainnya sebesar setengah. Molekul oksigen juga dapat dianggap memiliki dua ikatan tiga elektron dan satu ikatan dua elektron yang menjelaskan sifat paramagnetiknya.[5]
Molekul-molekul dengan ikatan elektron gasal biasanya sangat reaktif. Ikatan jenis ini biasanya hanya stabil pada atom-atom yang memiliki elektronegativitas yang sama.[5]

[sunting] Ikatan aromatik

Pada kebanyakan kasus, lokasi elektron tidak dapat ditandai dengan menggunakan garis (menandai dua elektron) ataupun titik (menandai elektron tungga). Ikatan aromatik yang terjadi pada molekul yang berbentuk cincin datar menunjukkan stabilitas yang lebih.
Pada benzena, 18 elektron ikatan mengikat 6 atom karbon bersama membentuk struktur cincin datar. "Orde" ikatan antara dua atom dapat dikatakan sebagai (18/6)/2=1,5 dan seluruh ikatan pada benzena tersebut adalah identik. Ikatan-ikatan ini dapat pula ditulis sebagai ikatan tunggal dan rangkap yang berselingan, namun hal ini kuranglah tepat mengingat ikatan rangkap dan ikatan tunggal memiliki kekuatan ikatan yang berbeda dan tidak identik.

[sunting] Ikatan logam

Pada ikatan logam, elektron-elektron ikatan terdelokalisasi pada kekisi (lattice) atom. Berbeda dengan senyawa organik, lokasi elektron yang berikat dan muatannya adalah statik. Oleh karena delokalisai yang menyebabkan elektron-elektron dapat bergerak bebas, senyawa ini memiliki sifat-sifat mirip logam dalam hal konduktivitas, duktilitas, dan kekerasan.

[sunting] Ikatan antarmolekul

Terdapat empat jenis dasar ikatan yang dapat terbentuk antara dua atau lebih molekul, ion, ataupun atom. Gaya antarmolekul menyebabkan molekul saling menarik atau menolak satu sama lainnya. Seringkali hal ini menentukan sifat-sifat fisik sebuah zat (seperti pada titik leleh).

[sunting] Dipol permanen ke dipol permanen

Perbedaan elektronegativitas yang bersar antara dua atom yang berikatan dengan kuat menyebabkan terbentuknya dipol (dwikutub). Dipol-dipol ini akan saling tarik-menarik ataupun tolak-menolak.

[sunting] Ikatan hidrogen

Ikatan hidrogen bisa dikatakan sebagai dipol permanen yang sangat kuat seperti yang dijelaskan di atas. Namun, pada ikatan hidrogen, proton hidrogen berada sangat dekat dengan atom penderma elektron dan mirip dengan ikatan tiga-pusat dua-elektron seperti pada diborana. Ikatan hidrogen menjelaskan titik didih zat cair yang relatif tinggi seperti air, ammonia, dan hidrogen fluorida jika dibandingkan dengan senyawa-senyawa yang lebih berat lainnya pada kolom tabel periodik yang sama.

[sunting] Dipol seketika ke dipol terimbas (van der Waals)

Dipol seketika ke dipol terimbas, atau gaya van der Waals, adalah ikatan yang paling lemah, namun sering dijumpai di antara semua zat-zat kimia. Misalnya atom helium, pada satu titik waktu, awan elektronnya akan terlihat tidak seimbang dengan salah satu muatan negatif berada di sisi tertentu. Hal ini disebut sebagai dipol seketika (dwikutub seketika). Dipol ini dapat menarik maupun menolak elektron-elektron helium lainnya, dan menyebabkan dipol lainnya. Kedua atom akan seketika saling menarik sebelum muatannya diseimbangkan kembali untuk kemudian berpisah.

[sunting] Interaksi kation-pi

Interaksi kation-pi terjadi di antara muatan negatif yang terlokalisasi dari elektron-elektron pada orbital π dengan muatan positif.

[sunting] Elektron pada ikatan kimia

Banyak senyawa-senyawa sederhana yang melibatkan ikatan-ikatan kovalen. Molekul-molekul ini memiliki struktur yang dapat diprediksi dengan menggunakan teori ikatan valensi, dan sifat-sfiat atom yang terlibat dapat dipahami menggunakan konsep bilangan oksidasi. Senyawa lain yang mempunyai struktur ion dapat dipahami dengan menggunakan teori-teori fisika klasik.
Pada kasus ikatan ion, elektron pada umumnya terlokalisasi pada atom tertentu, dan elektron-elektron todal bergerak bebas di antara atom-atom. Setiap atom ditandai dengan muatan listrik keseluruhan untuk membantu pemahaman kita atas konsep distribusi orbital molekul. Gaya antara atom-atom secara garis besar dikarakterisasikan dengan potensial elektrostatik kontinum (malaran) isotropik.
Sebaliknya pada ikatan kovalen, rapatan elektron pada sebuah ikatan tidak ditandai pada atom individual, namun terdelokalisasikan pada MO di antara atom-atom. Teori kombinasi linear orbital yang diterima secara umum membantu menjelaskan struktur orbital dan energi-energinya berdasarkan orbtial-orbital dari atom-atom molekul. Tidak seperti ikatan ion, ikatan kovalen bisa memiliki sifat-sifat anisotropik, dan masing-masing memiliki nama-nama tersendiri seperti ikatan sigma dan ikatan pi.
Atom-atom juga dapat membentuk ikatan-ikatan yang memiliki sifat-sifat antara ikatan ion dan kovalen. Hal ini bisa terjadi karena definisi didasari pada delokalisasi elektron. Elektron-elektron dapat secara parsial terdelokalisasi di antara atom-atom. Ikatan sejenis ini biasanya disebut sebagai ikatan polar kovalen. Lihat pula elektronegativitas.
Oleh akrena itu, elektron-elektron pada orbital molekul dapat dikatakan menjadi terlokalisasi pada atom-atom tertentu atau terdelokalisasi di antara dua atau lebih atom. Jenis ikatan antara dua tom ditentukan dari seberapa besara rapatan elektron tersebut terlokalisasi ataupun terdelokalisasi pada ikatan antar atom.

[sunting] Lihat pula

[sunting] Referensi

  1. ^ Laidler, K. J. (1993) The World of Physical Chemistry, Oxford University Press, p. 347
  2. ^ James, H. H. (1933). "The Ground State of the Hydrogen Molecule". Journal of Chemical Physics (American Institute of Physics) 1: 825 - 835.
  3. ^ Atkins, Peter (21 Desember 1997). Chemistry: Molecules, Matter and Change. New York: W. H. Freeman & Co.. hlm. 294- 295. ISBN 0-7167-3107-X.
  4. ^ Weinhold, F.; Landis, C. Valency and bonding, Cambridge, 2005; pp. 96-100.
  5. ^ a b Pauling, L. The Nature of the Chemical Bond. Cornell University Press, 1960.

[sunting] Pranala luar