Rabu, 28 Desember 2011

Fisika Tanah

Fisika tanah

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Fisika tanah adalah cabang dari ilmu tanah yang membahas sifat-sifat fisik tanah, pengukuran dan prediksi serta kontrol (pengaturan) proses fisika yang terjadi dalam tanah. Karena pengertian fisika meliputi materi dan energi, maka fisika tanah membahas pula status dan pergerakan material serta aliran dan transformasi energi dalam tanah.
Tujuan Fisika tanah dapat dilihat dari 2 sisi:
  • Dalam satu sisi, tujuan kajian fisika tanah adalah untuk memberikan pemahaman dasar tentang mekanisme pengaturan perilaku (fisika dan kimiawi) tanah, serta perannya dalam biosfer, termasuk proses saling hubungan dalam pertukaran energi di dalam tanah, serta siklus air dan material yang dapat diangkutnya.
  • Pada sisi lainnya, pemahaman fisika tanah dapat digunakan sebagai asas untuk manajemen sumberdaya tanah dan air, termasuk kegiatan irigasi, drainasi, konservasi tanah dan air, pengolahan tanah dan konstruksi.
Oleh karena itu fisika tanah dapat dipandang sebagai ilmu dasar sekaligus terapan dengan melibatkan berbagai cabang ilmu yang lain termasuk ilmu tanah, hidrologi, klimatolologi, ekologi, geologi, sedimentologi, botani dan agronomi.
Fisika tanah juga erat kaitannya dengan mekanika tanah, dinamika tanah dan teknik sipil.
Area penelitian fisika tanah dapat mencakup:
  • Pengukuran dan kuantifikasi sifat fisik tanah di lapangan
  • Transportasi materi dan energi (berupa air, udara, panas) di dalam tanah
  • Manajemen air untuk irigasi

IKATAN KIMIA

Ikatan kimia

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Ikatan kimia adalah sebuah proses fisika yang bertanggung jawab dalam interaksi gaya tarik menarik antara dua atom atau molekul yang menyebabkan suatu senyawa diatomik atau poliatomik menjadi stabil. Penjelasan mengenai gaya tarik menarik ini sangatlah rumit dan dijelaskan oleh elektrodinamika kuantum. Dalam prakteknya, para kimiawan biasanya bergantung pada teori kuantum atau penjelasan kualitatif yang kurang kaku (namun lebih mudah untuk dijelaskan) dalam menjelaskan ikatan kimia. Secara umum, ikatan kimia yang kuat diasosiasikan dengan transfer elektron antara dua atom yang berpartisipasi. Ikatan kimia menjaga molekul-molekul, kristal, dan gas-gas diatomik untuk tetap bersama. Selain itu ikatan kimia juga menentukan struktur suatu zat.
Kekuatan ikatan-ikatan kimia sangatlah bervariasi. Pada umumnya, ikatan kovalen dan ikatan ion dianggap sebagai ikatan "kuat", sedangkan ikatan hidrogen dan ikatan van der Waals dianggap sebagai ikatan "lemah". Hal yang perlu diperhatikan adalah bahwa ikatan "lemah" yang paling kuat dapat lebih kuat daripada ikatan "kuat" yang paling lemah.
Contoh model titik Lewis yang menggambarkan ikatan kimia anatara karbon C, hidrogen H, dan oksigen O. Penggambaran titik lewis adalah salah satu dari usaha awal kimiawan dalam menjelaskan ikatan kimia dan masih digunakan secara luas sampai sekarang.

Daftar isi

 [sembunyikan

[sunting] Tinjauan

Elektron yang mengelilingi inti atom bermuatan negatif dan proton yang terdapat dalam inti atom bermuatan positif, mengingat muatan yang berlawanan akan saling tarik menarik, maka dua atom yang berdekatan satu sama lainnya akan membentuk ikatan.
Dalam gambaran yang paling sederhana dari ikatan non-polar atau ikatan kovalen, satu atau lebih elektron, biasanya berpasangan, ditarik menuju sebuah wilayah di antara dua inti atom. Gaya ini dapat mengatasi gaya tolak menolak antara dua inti atom yang positif, sehingga atraksi ini menjaga kedua atom untuk tetap bersama, walaupun keduanya masih akan tetap bergetar dalam keadaan kesetimbangan. Ringkasnya, ikatan kovalen melibatkan elektron-elektron yang dikongsi dan dua atau lebih inti atom yang bermuatan positif secara bersamaan menarik elektron-elektron bermuatan negatif yang dikongsi.
Dalam gambaran ikatan ion yang disederhanakan, inti atom yang bermuatan positif secara dominan melebihi muatan positif inti atom lainnya, sehingga secara efektif menyebabkan satu atom mentransfer elektronnya ke atom yang lain. Hal ini menyebabkan satu atom bermuatan positif dan yang lainnya bermuatan negatif secara keseluruhan. Ikatan ini dihasilkan dari atraksi elektrostatik di antara atom-atom dan atom-atom tersebut menjadi ion-ion yang bermuatan.
Semua bentuk ikatan dapat dijelaskan dengan teori kuantum, namun dalam prakteknya, kaidah-kaidah yang disederhanakan mengijinkan para kimiawan untuk memprediksikan kekuatan, arah, dan polaritas sebuah ikatan. Kaidah oktet (Bahasa Inggris: octet rule) dan teori VSEPR adalah dua contoh kaidah yang disederhanakan tersebut. Ada pula teori-teori yang lebih canggih, yaitu teori ikatan valens yang meliputi hibridisasi orbital dan resonans, dan metode orbital molekul kombinasi linear orbital atom (Bahasa Inggris: Linear combination of atomic orbitals molecular orbital method) yang meliputi teori medan ligan. Elektrostatika digunakan untuk menjelaskan polaritas ikatan dan efek-efeknya terhadap zat-zat kimia.

[sunting] Sejarah

Spekulasi awal dari sifat-sifat ikatan kimia yang berawal dari abad ke-12 mengganggap spesi kimia tertentu disatukan oleh sejenis afinitas kimia. Pada tahun 1704, Isaac Newton menggarisbesarkan teori ikatan atomnya pada "Query 31" buku Opticksnya dengan mengatakan atom-atom disatukan satu sama lain oleh "gaya" tertentu.
Pada tahun 1819, setelah penemuan tumpukan volta, Jöns Jakob Berzelius mengembangkan sebuah teori kombinasi kimia yang menekankan sifat-sifat elektrogenativitas dan elektropositif dari atom-atom yang bergabung. Pada pertengahan abad ke-19 Edward Frankland, F.A. Kekule, A.S. Couper, A.M. Butlerov, dan Hermann Kolbe, beranjak pada teori radikal, mengembangkan teori valensi yang pada awalnya disebut "kekuatan penggabung". Teori ini mengatakan sebuah senyawa tergabung berdasarkan atraksi kutub positif dan kutub negatif. Pada tahun 1916, kimiawan Gilbert N. Lewis mengembangkan konsep ikatan elektron berpasangan. Konsep ini mengatakan dua atom dapat berkongsi satu sampai enam elektron, membentuk ikatan elektron tunggal, ikatan tunggal, ikatan rangkap dua, atau ikatan rangkap tiga.
Lewis-bond.jpg
Dalam kata-kata Lewis sendiri:
An electron may form a part of the shell of two different atoms and cannot be said to belong to either one exclusively.
Pada tahun yang sama, Walther Kossel juga mengajukan sebuah teori yang mirip dengan teori Lewis, namun model teorinya mengasumsikan transfer elektron yang penuh antara atom-atom. Teori ini merupakan model ikatan polar. Baik Lewis dan Kossel membangun model ikatan mereka berdasarkan kaidah Abegg (1904).
Pada tahun 1927, untuk pertama kalinya penjelasan matematika kuantum yang penuh atas ikatan kimia yang sederhana berhasil diturunkan oleh fisikawan Denmark Oyvind Burrau.[1] Hasil kerja ini menunjukkan bahwa pendekatan kuantum terhadap ikatan kimia dapat secara mendasar dan kuantitatif tepat. Namun metode ini tidak mampu dikembangkan lebih jauh untuk menjelaskan molekul yang memiliki lebih dari satu elektron. Pendekatan yang lebih praktis namun kurang kuantitatif dikembangkan pada tahun yang sama oleh Walter Heitler and Fritz London. Metode Heitler-London menjadi dasar dari teori ikatan valensi. Pada tahun 1929, metode orbital molekul kombinasi linear orbital atom (Bahasa Inggris: linear combination of atomic orbitals molecular orbital method), disingkat LCAO, diperkenalkan oleh Sir John Lennard-Jones yang bertujuan menurunkan struktur elektronik dari molekul F2 (fluorin) dan O2 (oksigen) berdasarkan prinsip-prinsip dasar kuantum. Teori orbital molekul ini mewakilkan ikatan kovalen sebagai orbital yang dibentuk oleh orbital-orbital atom mekanika kuantum Schrödinger yang telah dihipotesiskan untuk atom berelektron tunggal. Persamaan ikatan elektron pada multielektron tidak dapat diselesaikan secara analitik, namun dapat dilakukan pendekatan yang memberikan hasil dan prediksi yang secara kualitatif cukup baik. Kebanyakan perhitungan kuantitatif pada kimia kuantum modern menggunakan baik teori ikatan valensi maupun teori orbital molekul sebagai titik awal, walaupun pendekatan ketiga, teori fungsional rapatan (Bahasa Inggris: density functional theory), mulai mendapatkan perhatian yang lebih akhir-akhir ini.
Pada tahun 1935, H. H. James dan A. S. Coolidge melakukan perhitungan pada molekul dihidrogen.Berbeda dengan perhitungan-perhitungan sebelumnya yang hanya menggunakan fungsi-fungsi jarak antara elektron dengan inti atom, mereka juga menggunakan fungsi yang secara eksplisit memperhitungkan jarak antara dua elektron.[2] Dengan 13 parameter yang dapat diatur, mereka mendapatkan hasil yang sangat mendekati hasil yang didapatkan secara eksperimen dalam hal energi disosiasi. Perluasan selanjutnya menggunakan 54 parameter dan memberikan hasil yang sangat sesuai denganhasil eksperimen. Perhitungan ini meyakinkan komunitas sains bahwa teori kuantum dapat memberikan hasil yang sesuai dengan hasil eksperimen. Namun pendekatan ini tidak dapat memberikan gambaran fisik seperti yang terdapat pada teori ikatan valensi dan teori orbital molekul. Selain itu, ia juga sangat sulit diperluas untuk perhitungan molekul-molekul yang lebih besar.

[sunting] Teori ikatan valensi

Pada tahun 1927, teori ikatan valensi dikembangkan atas dasar argumen bahwa sebuah ikatan kimia terbentuk ketika dua valensi elektron bekerja dan menjaga dua inti atom bersama oleh karena efek penurunan energi sistem. Pada tahun 1931, beranjak dari teori ini, kimawan Linus Pauling mempublikasikan jurnal ilmiah yang dianggap sebagai jurnal paling penting dalam sejarah kimia: "On the Nature of the Chemical Bond". Dalam jurnal ini, berdasarkan hasil kerja Lewis dan teori valensi ikatan Heitler dan London, dia mewakilkan enam aturan pada ikatan elektron berpasangan:
1. Ikatan elektron berpasangan terbentuk melalui interaksi elektron tak-berpasangan pada masing-masing atom.
2. Spin-spin elektron haruslah saling berlawanan.
3. Seketika dipasangkan, dua elektron tidak bisa berpartisipasi lagi pada ikatan lainnya.
4. Pertukaran elektron pada ikatan hanya melibatkan satu persamaan gelombang untuk setiap atom.
5. Elektron-elektron yang tersedia pada aras energi yang paling rendah akan membentuk ikatan-ikatan yang paling kuat.
6. Dari dua orbital pada sebuah atom, salah satu yang dapat bertumpang tindih paling banyaklah yang akan membentuk ikatan paling kuat, dan ikatan ini akan cenderung berada pada arah orbital yang terkonsentrasi.
Buku teks tahun 1939 Pauling: On the Nature of Chemical Bond menjadi apa yang banyak orang sebut sebagai "kitab suci" kimia modern. Buku ini membantu kimiawan eksperimental untuk memahami dampak teori kuantum pada kimia. Namun, edisi 1959 selanjutnya gagal untuk mengalamatkan masalah yang lebih mudah dimengerti menggunakan teori orbital molekul. Dampak dari teori valensi ini berkurang sekitar tahun 1960-an dan 1970-an ketika popularitas teori orbital molekul meningkat dan diimplementasikan pada beberapa progam komputer yang besar. Sejak tahun 1980-an, masalah implementasi teori ikatan valensi yang lebih sulit pada program-program komputer telah hampir dipecahkan dan teori ini beranjak bangkit kembali.

[sunting] Teori orbital molekul

Teori orbital molekul (Bahasa Inggris: Molecular orbital tehory), disingkat MO, menggunakan kombinasi linear orbital-orbital atom untuk membentuk orbital-orbital molekul yang menrangkumi seluruh molekul. Semuanya ini seringkali dibagi menjadi orbital ikat, orbital antiikat, dan orbital bukan-ikatan. Orbital molekul hanyalah sebuah orbital Schrödinger yang melibatkan beberapa inti atom. Jika orbital ini merupakan tipe orbital yang elektron-elektronnya memiliki kebolehjadian lebih tinggi berada di antara dua inti daripada di lokasi lainnya, maka orbital ini adalah orbital ikat dan akan cenderung menjaga kedua inti bersama. Jika elektron-elektron cenderung berada di orbital molekul yang berada di lokasi lainnya, maka orbital ini adalah orbital antiikat dan akan melemahkan ikatan. Elektron-elektron yang berada pada orbital bukan-ikatan cenderung berada pada orbital yang paling dalam (hampir sama dengan orbital atom), dan diasosiasikan secara keseluruhan pada satu inti. Elektron-elektron ini tidak menguatkan maupun melemahkan kekuatan ikatan.

[sunting] Perbandingan antara teori ikatan valensi dan teori orbital molekul

Pada beberapa bidang, teori ikatan valensi lebih baik daripada teori orbital molekul. Ketika diaplikasikan pada molekul berelektron dua, H2, teori ikatan valensi, bahkan dengan pendekatan Heitler-London yang paling sederhana, memberikan pendekatan energi ikatan yang lebih dekat dan representasi yang lebih akurat pada tingkah laku elektron ketika ikatan kimia terbentuk dan terputus. Sebaliknya, teori orbital molekul memprediksikan bahwa molekul hidrogen akan berdisosiasi menjadi superposisi linear dari hidrogen atom dan ion hidrogen positif dan negatif. Prediksi ini tidak sesuai dengan gambaran fisik. Hal ini secara sebagian menjelaskan mengapa kurva energi total terhadap jarak antar atom pada metode ikatan valensi berada di atas kurva yang menggunakan metode orbital molekul. Situasi ini terjadi pada semua molekul diatomik homonuklir dan tampak dengan jelas pada F2 ketika energi minimum pada kurva yang menggunakan teori orbital molekul masih lebih tinggi dari energi dua atom F.
Konsep hibridisasi sangatlah berguna dan variabilitas pada ikatan di kebanyakan senyawa organik sangatlah rendah, menyebabkan teori ini masih menjadi bagian yang tak terpisahkan dari kimia organik. Namun, hasil kerja Friedrich Hund, Robert Mulliken, dan Gerhard Herzberg menunjukkan bahwa teori orbital molekul memberikan deskripsi yang lebih tepat pada spektrokopi, ionisasi, dan sifat-sifat magnetik molekul. Kekurangan teori ikatan valensi menjadi lebih jelas pada molekul yang berhipervalensi (contohnya PF5) ketika molekul ini dijelaskan tanpa menggunakan orbital-orbital d yang sangat krusial dalam hibridisasi ikatan yang diajukan oleh Pauling. Logam kompleks dan senyawa yang kurang elektron (seperti diborana) dijelaskan dengan sangat baik oleh teori orbital molekul, walaupun penjelasan yang menggunakan teori ikatan valensi juga telah dibuat.
Pada tahun 1930, dua metode ini saling bersaing sampai disadari bahwa keduanya hanyalah merupakan pendekatan pada teori yang lebih baik. Jika kita mengambil struktur ikatan valensi yang sederhana dan menggabungkan semua struktur kovalen dan ion yang dimungkinkan pada sekelompok orbital atom, kita mendapatkan apa yang disebut sebagai fungsi gelombang interaksi konfigurasi penuh. Jika kita mengambil deskripsi orbital molekul sederhana pada keadaan dasar dan mengkombinasikan fungsi tersebut dengan fungsi-fungsi yang mendeskripsikan keseluruhan kemungkinan keadaan tereksitasi yang menggunakan orbital tak terisi dari sekelompok orbital atom yang sama, kita juga mendapatkan fungsi gelombang interaksi konfigurasi penuh. Terlihatlah bahwa pendekatan orbital molekul yang sederhana terlalu menitikberatkan pada struktur ion, sedangkan pendekatan teori valensi ikatan yang sederhana terlalu sedikit menitikberatkan pada struktur ion. Dapat kita katakan bahwa pendekatan orbital molekul terlalu ter-delokalisasi, sedangkan pendekatan ikatan valensi terlalu ter-lokalisasi.
Sekarang kedua pendekatan tersebut dianggap sebagai saling memenuhi, masing-masing memberikan pandangannya sendiri terhadap masalah-masalah pada ikatan kimia. Perhitungan modern pada kimia kuantum biasanya dimulai dari (namun pada akhirnya menjauh) pendekatan orbital molekul daripada pendekatan ikatan valensi. Ini bukanlah karena pendekatan orbital molekul lebih akurat dari pendekatan teori ikatan valensi, melainkan karena pendekatan orbital molekul lebih memudahkan untuk diubah menjadi perhitungan numeris. Namun program-progam ikatan valensi yang lebih baik juga tersedia.

[sunting] Ikatan dalam rumus kimia

Bentuk atom-atom dan molekul-molekul yang 3 dimensi sangatlah menyulitkan dalam menggunakan teknik tunggal yang mengindikasikan orbital-orbital dan ikatan-ikatan. Pada rumus molekul, ikatan kimia (orbital yang berikatan) diindikasikan menggunakan beberapa metode yang bebeda tergantung pada tipe diskusi. Kadang-kadang kesemuaannya dihiraukan. Sebagai contoh, pada kimia organik, kimiawan biasanya hanya peduli pada gugus fungsi molekul. Oleh karena itu, rumus molekul etanol dapat ditulis secara konformasi, 3-dimensi, 2-dimensi penuh (tanpa indikasi arah ikatan 3-dimensi), 2-dimensi yang disingkat (CH3–CH2–OH), memisahkan gugus fungsi dari bagian molekul lainnnya (C2H5OH), atau hanya dengan konstituen atomnya saja (C2H6O). Kadangkala, bahkan kelopak valensi elektron non-ikatan (dengan pendekatan arah yang digambarkan secara 2-dimensi) juga ditandai. Beberapa kimiawan juga menandai orbital-orbital atom, sebagai contoh anion etena−4 yang dihipotesiskan (\/C=C/\ −4) mengindikasikan kemungkinan pembentukan ikatan.sehingga terjadi ikatan rangkap dua antara banci2 dgn germo.wkwkwk iya kan gan...

[sunting] Ikatan kuat kimia

Panjang ikat dalam pm
dan energi ikat dalam kJ/mol.

Panjang ikat dapat dikonversikan menjadi Å
dengan pembagian dengan 100 (1 Å = 100 pm).
Data diambil dari [1].
Ikatan Panjang
(pm)
Energi
(kJ/mol)
H — Hidrogen
H–H 74 436
H–C 109 413
H–N 101 391
H–O 96 366
H–F 92 568
H–Cl 127 432
H–Br 141 366
C — Karbon
C–H 109 413
C–C 154 348
C=C 134 614
C≡C 120 839
C–N 147 308
C–O 143 360
C–F 135 488
C–Cl 177 330
C–Br 194 288
C–I 214 216
C–S 182 272
N — Nitrogen
N–H 101 391
N–C 147 308
N–N 145 170
N≡N 110 945
O — Oksigen
O–H 96 366
O–C 143 360
O–O 148 145
O=O 121 498
F, Cl, Br, I — Halogen
F–H 92 568
F–F 142 158
F–C 135 488
Cl–H 127 432
Cl–C 177 330
Cl–Cl 199 243
Br–H 141 366
Br–C 194 288
Br–Br 228 193
I–H 161 298
I–C 214 216
I–I 267 151
S — Belerang
C–S 182 272
Ikatan-ikatan berikut adalah ikatan intramolekul yang mengikat atom-atom bersama menjadi molekul. Dalam pandangan yang sederhana dan terlokalisasikan, jumlah elektron yang berpartisipasi dalam suatu ikatan biasanya merupakan perkalian dari dua, empat, atau enam. Jumlah yang berangka genap umumnya dijumpai karena elektron akan memiliki keadaan energi yang lebih rendah jika berpasangan. Teori-teori ikatan yang lebih canggih menunjukkan bahwa kekuatan ikatan tidaklah selalu berupa angka bulat dan tergantung pada distribusi elektron pada setiap atom yang terlibat dalam sebuah ikatan. Sebagai contohnya, karbon-karbon dalam senyawa benzena dihubungkan satu sama lain oleh ikatan 1.5 dan dua atom dalam nitrogen monoksida NO dihubungkan oleh ikatan 2,5. Keberadaan ikatan rangkap empat juga diketahui dengan baik. Jenis-jenis ikatan kuat bergantung pada perbedaan elektronegativitas dan distribusi orbital elektron yang tertarik pada suatu atom yang terlibat dalam ikatan. Semakin besar perbedaan elektronegativitasnya, semakin besar elektron-elektron tersebut tertarik pada atom yang berikat dan semakin bersifat ion pula ikatan tersebut. Semakin kecil perbedaan elektronegativitasnya, semakin bersifat kovalen ikatan tersebut.

[sunting] Ikatan kovalen

Ikatan kovalen adalah ikatan yang umumnya sering dijumpai, yaitu ikatan yang perbedaan elektronegativitas (negatif dan positif) di antara atom-atom yang berikat sangatlah kecil atau hampir tidak ada. Ikatan-ikatan yang terdapat pada kebanyakan senyawa organik dapat dikatakan sebagai ikatan kovalen. Lihat pula ikatan sigma dan ikatan pi untuk penjelasan LCAO terhadap jenis ikatan ini.

[sunting] Ikatan polar kovalen

Ikatan polar kovalen merupakan ikatan yang sifat-sifatnya berada di antara ikatan kovalen dan ikatan ion.

[sunting] Ikatan ion

Ikatan ion merupakan sejenis interaksi elektrostatik antara dua atom yang memiliki perbedaan elektronegativitas yang besar. Tidaklah terdapat nilai-nilai yang pasti yang membedakan ikatan ion dan ikatan kovalen, namun perbedaan elektronegativitas yang lebih besar dari 2,0 bisanya disebut ikatan ion, sedangkan perbedaan yang lebih kecil dari 1,5 biasanya disebut ikatan kovalen.[3] Ikatan ion menghasilkan ion-ion positif dan negatif yang berpisah. Muatan-muatan ion ini umumnya berkisar antara -3 e sampai dengan +3e.

[sunting] Ikatan kovalen koordinat

Ikatan kovalen koordinat, kadangkala disebut sebagai ikatan datif, adalah sejenis ikatan kovalen yang keseluruhan elektron-elektron ikatannya hanya berasal dari salah satu atom, penderma pasangan elektron, ataupun basa Lewis. Konsep ini mulai ditinggalkan oleh para kimiawan seiring dengan berkembangnya teori orbital molekul. Contoh ikatan kovalen koordinat terjadi pada nitron dan ammonia borana. Susunan ikatan ini berbeda dengan ikatan ion pada perbedaan elektronegativitasnya yang kecil, sehingga menghasilkan ikatan yang kovalen. Ikatan ini biasanya ditandai dengan tanda panah. Ujung panah ini menunjuk pada akseptor elektron atau asam Lewis dan ekor panah menunjuk pada penderma elektron atau basa Lewis

[sunting] Ikatan pisang

Ikatan pisang adalah sejenis ikatan yang terdapat pada molekul-molekul yang mengalami terikan ataupun yang mendapat rintangan sterik, sehingga orbital-orbital ikatan tersebut dipaksa membentuk struktur ikatan yang mirip dengan pisang. Ikatan pisang biasanya lebih rentan mengalami reaksi daripada ikatan-ikatan normal lainnya.

[sunting] Ikatan 3c-2e dan 3c-4e

Dalam ikatan tiga-pusat dua-elektron, tiga atom saling berbagi dua elektron. Ikatan sejenis ini terjadi pada senyawa yang kekurangan elektron seperti pada diborana. Setiap ikatan mengandung sepasang elektron yang menghubungkan atom boron satu sama lainnya dalam bentuk pisang dengan sebuah proton (inti atom hidrogen) di tengah-tengah ikatan, dan berbagi elektron dengan kedua atom boron. Terdapat pula Ikatan tiga-pusat empat-elektron yang menjelaskan ikatan pada molekul hipervalen.

[sunting] Ikatan tiga elektron dan satu elektron

Ikatan-ikatan dengan satu atau tiga elektron dapat ditemukan pada spesi radikal yang memiliki jumlah elektron gasal (ganjil). Contoh paling sederhana dari ikatan satu elektron dapat ditemukan pada kation molekul hidrogen H2+. Ikatan satu elektron seringkali memiliki energi ikat yang setengah kali dari ikatan dua elektron, sehingga ikatan ini disebut pula "ikatan setengah". Namun terdapat pengecualian pada kasus dilitium. Ikatan dilitium satu elektron, Li2+, lebih kuat dari ikatan dilitium dua elektron Li2. Pengecualian ini dapat dijelaskan dengan hibridisasi dan efek kelopak dalam. [4]
Contoh sederhana dari ikatan tiga elektron dapat ditemukan pada kation dimer helium, He2+, dan dapat pula dianggap sebagai "ikatan setengah" karena menurut teori orbital molekul, elektron ke-tiganya merupakan orbital antiikat yang melemahkan ikatan dua elektron lainnya sebesar setengah. Molekul oksigen juga dapat dianggap memiliki dua ikatan tiga elektron dan satu ikatan dua elektron yang menjelaskan sifat paramagnetiknya.[5]
Molekul-molekul dengan ikatan elektron gasal biasanya sangat reaktif. Ikatan jenis ini biasanya hanya stabil pada atom-atom yang memiliki elektronegativitas yang sama.[5]

[sunting] Ikatan aromatik

Pada kebanyakan kasus, lokasi elektron tidak dapat ditandai dengan menggunakan garis (menandai dua elektron) ataupun titik (menandai elektron tungga). Ikatan aromatik yang terjadi pada molekul yang berbentuk cincin datar menunjukkan stabilitas yang lebih.
Pada benzena, 18 elektron ikatan mengikat 6 atom karbon bersama membentuk struktur cincin datar. "Orde" ikatan antara dua atom dapat dikatakan sebagai (18/6)/2=1,5 dan seluruh ikatan pada benzena tersebut adalah identik. Ikatan-ikatan ini dapat pula ditulis sebagai ikatan tunggal dan rangkap yang berselingan, namun hal ini kuranglah tepat mengingat ikatan rangkap dan ikatan tunggal memiliki kekuatan ikatan yang berbeda dan tidak identik.

[sunting] Ikatan logam

Pada ikatan logam, elektron-elektron ikatan terdelokalisasi pada kekisi (lattice) atom. Berbeda dengan senyawa organik, lokasi elektron yang berikat dan muatannya adalah statik. Oleh karena delokalisai yang menyebabkan elektron-elektron dapat bergerak bebas, senyawa ini memiliki sifat-sifat mirip logam dalam hal konduktivitas, duktilitas, dan kekerasan.

[sunting] Ikatan antarmolekul

Terdapat empat jenis dasar ikatan yang dapat terbentuk antara dua atau lebih molekul, ion, ataupun atom. Gaya antarmolekul menyebabkan molekul saling menarik atau menolak satu sama lainnya. Seringkali hal ini menentukan sifat-sifat fisik sebuah zat (seperti pada titik leleh).

[sunting] Dipol permanen ke dipol permanen

Perbedaan elektronegativitas yang bersar antara dua atom yang berikatan dengan kuat menyebabkan terbentuknya dipol (dwikutub). Dipol-dipol ini akan saling tarik-menarik ataupun tolak-menolak.

[sunting] Ikatan hidrogen

Ikatan hidrogen bisa dikatakan sebagai dipol permanen yang sangat kuat seperti yang dijelaskan di atas. Namun, pada ikatan hidrogen, proton hidrogen berada sangat dekat dengan atom penderma elektron dan mirip dengan ikatan tiga-pusat dua-elektron seperti pada diborana. Ikatan hidrogen menjelaskan titik didih zat cair yang relatif tinggi seperti air, ammonia, dan hidrogen fluorida jika dibandingkan dengan senyawa-senyawa yang lebih berat lainnya pada kolom tabel periodik yang sama.

[sunting] Dipol seketika ke dipol terimbas (van der Waals)

Dipol seketika ke dipol terimbas, atau gaya van der Waals, adalah ikatan yang paling lemah, namun sering dijumpai di antara semua zat-zat kimia. Misalnya atom helium, pada satu titik waktu, awan elektronnya akan terlihat tidak seimbang dengan salah satu muatan negatif berada di sisi tertentu. Hal ini disebut sebagai dipol seketika (dwikutub seketika). Dipol ini dapat menarik maupun menolak elektron-elektron helium lainnya, dan menyebabkan dipol lainnya. Kedua atom akan seketika saling menarik sebelum muatannya diseimbangkan kembali untuk kemudian berpisah.

[sunting] Interaksi kation-pi

Interaksi kation-pi terjadi di antara muatan negatif yang terlokalisasi dari elektron-elektron pada orbital π dengan muatan positif.

[sunting] Elektron pada ikatan kimia

Banyak senyawa-senyawa sederhana yang melibatkan ikatan-ikatan kovalen. Molekul-molekul ini memiliki struktur yang dapat diprediksi dengan menggunakan teori ikatan valensi, dan sifat-sfiat atom yang terlibat dapat dipahami menggunakan konsep bilangan oksidasi. Senyawa lain yang mempunyai struktur ion dapat dipahami dengan menggunakan teori-teori fisika klasik.
Pada kasus ikatan ion, elektron pada umumnya terlokalisasi pada atom tertentu, dan elektron-elektron todal bergerak bebas di antara atom-atom. Setiap atom ditandai dengan muatan listrik keseluruhan untuk membantu pemahaman kita atas konsep distribusi orbital molekul. Gaya antara atom-atom secara garis besar dikarakterisasikan dengan potensial elektrostatik kontinum (malaran) isotropik.
Sebaliknya pada ikatan kovalen, rapatan elektron pada sebuah ikatan tidak ditandai pada atom individual, namun terdelokalisasikan pada MO di antara atom-atom. Teori kombinasi linear orbital yang diterima secara umum membantu menjelaskan struktur orbital dan energi-energinya berdasarkan orbtial-orbital dari atom-atom molekul. Tidak seperti ikatan ion, ikatan kovalen bisa memiliki sifat-sifat anisotropik, dan masing-masing memiliki nama-nama tersendiri seperti ikatan sigma dan ikatan pi.
Atom-atom juga dapat membentuk ikatan-ikatan yang memiliki sifat-sifat antara ikatan ion dan kovalen. Hal ini bisa terjadi karena definisi didasari pada delokalisasi elektron. Elektron-elektron dapat secara parsial terdelokalisasi di antara atom-atom. Ikatan sejenis ini biasanya disebut sebagai ikatan polar kovalen. Lihat pula elektronegativitas.
Oleh akrena itu, elektron-elektron pada orbital molekul dapat dikatakan menjadi terlokalisasi pada atom-atom tertentu atau terdelokalisasi di antara dua atau lebih atom. Jenis ikatan antara dua tom ditentukan dari seberapa besara rapatan elektron tersebut terlokalisasi ataupun terdelokalisasi pada ikatan antar atom.

[sunting] Lihat pula

[sunting] Referensi

  1. ^ Laidler, K. J. (1993) The World of Physical Chemistry, Oxford University Press, p. 347
  2. ^ James, H. H. (1933). "The Ground State of the Hydrogen Molecule". Journal of Chemical Physics (American Institute of Physics) 1: 825 - 835.
  3. ^ Atkins, Peter (21 Desember 1997). Chemistry: Molecules, Matter and Change. New York: W. H. Freeman & Co.. hlm. 294- 295. ISBN 0-7167-3107-X.
  4. ^ Weinhold, F.; Landis, C. Valency and bonding, Cambridge, 2005; pp. 96-100.
  5. ^ a b Pauling, L. The Nature of the Chemical Bond. Cornell University Press, 1960.

[sunting] Pranala luar


SEJARAH ILMU KIMIA

Sejarah ilmu kimia - Thread Not Solved Yet
from http://andromeda13.weebly.com/my-chemistry.html

Ilmu kimia berkembang dari tiga sumber, yaitu alchemy/alkimia, ilmu kedokteran dan kemajuan teknologi.

Alkimia adalah protosains yang menggabungkan unsur-unsur kimia, fisika, astrologi, seni, semiotika, metalurgi, kedokteran, mistisisme, dan agama.Kata alkimia berasal dari Bahasa Arabal-kimiya atau al-khimiya (الكيمياء atau الخيمياء), yang mungkin dibentuk dari partikel al- dan kata Bahasa Yunani khumeia (χυμεία) yang berarti "mencetak bersama", "menuangkan bersama", "melebur", "aloy", dan lain-lain (dari khumatos, "yang dituangkan, batang logam"). Etimologi lain mengaitkan kata ini dengan kata "Al Kemi", yang berarti "Seni Mesir", karena bangsa Mesir Kuno menyebut negerinya "Kemi" dan dipandang sebagai penyihir sakti di seluruh dunia kuno.[http://id.wikipedia.org/wiki/Alkemi]

Alkimia mulai menyebar melalui timur tengah sampai ke eropa, saat itu alkimia sangat dipengaruhi oleh pemikiran barat. Alkimia sangat dipengaruhi oleh ilmuwan-ilmuwan yunani yang menyatakan bahwa materi dapat berubah menjadi material yang lain yang lebih sempurna. Selama 1500 tahun, tradisional alkimia mempelajari tetang materi dan perubahannya. Mereka mencari berbagai cara untuk merubah material yang tidak berharga seperti tembaga menjadi sesuatu yang sangat bernilai seperti emas (transmutasi logam). Hal ini yang menyebabkan para ahli alkimia melukis objek-objek tembaga dengan lapisan emas untuk membodohi para pengikutnya.

Banyak penemuan dalam bidang alkimia yang sangat berarti dalam proses kimia. Destilasi, perkolasi dan ekstrasi adalah beberapa metode penting yang ditemukan dalam perkembangan alkimia.

Alkimia juga mempengaruhi praktek kedokteran di eropa. Sejak abad ke 13, destilasi tanaman herbal telah digunakan untuk pengobatan tradisional. Paracelsus, seorang ahli alkimia dan fisikawan penting dalam sejarah menyatakan bahwa tubuh manusia merupakan suatu sistem kimia yang keseimbangan senyawa di dalamnya dapat digantikan oleh obat-obatan/perawatan kedokteran. Pengikut paracelsus yang kemudian menemukan mineral-drugs pada abad ke 17.

Selain dalam bidang alkimia dan kedokteran, ilmu kimia juga dipengaruhi oleh perkembangan teknologi. Selama ribuan tahun manusia mencoba untuk mengembangkan teknologi yang dapat menghasilkan perubahan material. Pembuatan tembikar, prose dying dan metalurgi turut memberikan pengaruh terhadap pemikiran tentang perubahan material. Pada abad pertengahan, teknologi pembuatan tepung, metalurgi, dan geologi mulai didokumenkan. Banyak buku-buku yang menjelaskan tentang metode pemurnian, assay dan penggunaan timbangan.

SEJARAH KIMIA

Kimia

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Kimia adalah ilmu yang mempelajari benda, ciri-cirinya, strukturnya, komposisinya, dan perubahannya yang disebabkan karena interaksi dengan benda lain atau reaksi kimia.
Level pembesaran:
1. Level makroskopik – Benda
2. Level molekuler
3. Level atom – Proton, neutron, dan elektron
4. Level subatomik – Elektron
5. Level subatomik – Quark
6. Level string
Dalam reaksi kimia, ikatan antara atom-atom akan dipecah dan akan membentuk substansi baru dengan ciri-ciri yang berbeda. Dalam tanur tinggi, besi oksida yang direaksikan dengan karbon monoksida akan membentuk besi dan karbon dioksida.
Kimia (dari bahasa Arab: كيمياء, transliterasi: kimiya = perubahan benda/zat atau bahasa Yunani: χημεία, transliterasi: khemeia) adalah ilmu yang mempelajari mengenai komposisi, struktur, dan sifat zat atau materi dari skala atom hingga molekul serta perubahan atau transformasi serta interaksi mereka untuk membentuk materi yang ditemukan sehari-hari. Kimia juga mempelajari pemahaman sifat dan interaksi atom individu dengan tujuan untuk menerapkan pengetahuan tersebut pada tingkat makroskopik. Menurut kimia modern, sifat fisik materi umumnya ditentukan oleh struktur pada tingkat atom yang pada gilirannya ditentukan oleh gaya antaratom dan ikatan kimia.

Daftar isi

 [sembunyikan

[sunting] Pengantar

Kimia sering disebut sebagai "ilmu sesat" karena menghubungkan berbagai ilmu lain, seperti fisika, ilmu bahan, nanoteknologi, biologi, farmasi, kedokteran, bioinformatika, dan geologi [1]. Koneksi ini timbul melalui berbagai subdisiplin yang memanfaatkan konsep-konsep dari berbagai disiplin ilmu. Sebagai contoh, kimia fisik melibatkan penerapan prinsip-prinsip fisika terhadap materi pada tingkat atom dan molekul.
Kimia berhubungan dengan interaksi materi yang dapat melibatkan dua zat atau antara materi dan energi, terutama dalam hubungannya dengan hukum pertama termodinamika. Kimia tradisional melibatkan interaksi antara zat kimia dalam reaksi kimia, yang mengubah satu atau lebih zat menjadi satu atau lebih zat lain. Kadang reaksi ini digerakkan oleh pertimbangan entalpi, seperti ketika dua zat berentalpi tinggi seperti hidrogen dan oksigen elemental bereaksi membentuk air, zat dengan entalpi lebih rendah. Reaksi kimia dapat difasilitasi dengan suatu katalis, yang umumnya merupakan zat kimia lain yang terlibat dalam media reaksi tapi tidak dikonsumsi (contohnya adalah asam sulfat yang mengkatalisasi elektrolisis air) atau fenomena immaterial (seperti radiasi elektromagnet dalam reaksi fotokimia). Kimia tradisional juga menangani analisis zat kimia, baik di dalam maupun di luar suatu reaksi, seperti dalam spektroskopi.
Semua materi normal terdiri dari atom atau komponen-komponen subatom yang membentuk atom; proton, elektron, dan neutron. Atom dapat dikombinasikan untuk menghasilkan bentuk materi yang lebih kompleks seperti ion, molekul, atau kristal. Struktur dunia yang kita jalani sehari-hari dan sifat materi yang berinteraksi dengan kita ditentukan oleh sifat zat-zat kimia dan interaksi antar mereka. Baja lebih keras dari besi karena atom-atomnya terikat dalam struktur kristal yang lebih kaku. Kayu terbakar atau mengalami oksidasi cepat karena ia dapat bereaksi secara spontan dengan oksigen pada suatu reaksi kimia jika berada di atas suatu suhu tertentu.
Zat cenderung diklasifikasikan berdasarkan energi, fase, atau komposisi kimianya. Materi dapat digolongkan dalam 4 fase, urutan dari yang memiliki energi paling rendah adalah padat, cair, gas, dan plasma. Dari keempat jenis fase ini, fase plasma hanya dapat ditemui di luar angkasa yang berupa bintang, karena kebutuhan energinya yang teramat besar. Zat padat memiliki struktur tetap pada suhu kamar yang dapat melawan gravitasi atau gaya lemah lain yang mencoba mengubahnya. Zat cair memiliki ikatan yang terbatas, tanpa struktur, dan akan mengalir bersama gravitasi. Gas tidak memiliki ikatan dan bertindak sebagai partikel bebas. Sementara itu, plasma hanya terdiri dari ion-ion yang bergerak bebas; pasokan energi yang berlebih mencegah ion-ion ini bersatu menjadi partikel unsur. Satu cara untuk membedakan ketiga fase pertama adalah dengan volume dan bentuknya: kasarnya, zat padat memeliki volume dan bentuk yang tetap, zat cair memiliki volume tetap tapi tanpa bentuk yang tetap, sedangkan gas tidak memiliki baik volume ataupun bentuk yang tetap.
Air yang dipanaskan akan berubah fase menjadi uap air.
Air (H2O) berbentuk cairan dalam suhu kamar karena molekul-molekulnya terikat oleh gaya antarmolekul yang disebut ikatan Hidrogen. Di sisi lain, hidrogen sulfida (H2S) berbentuk gas pada suhu kamar dan tekanan standar, karena molekul-molekulnya terikat dengan interaksi dwikutub (dipole) yang lebih lemah. Ikatan hidrogen pada air memiliki cukup energi untuk mempertahankan molekul air untuk tidak terpisah satu sama lain, tapi tidak untuk mengalir, yang menjadikannya berwujud cairan dalam suhu antara 0 °C sampai 100 °C pada permukaan laut. Menurunkan suhu atau energi lebih lanjut mengizinkan organisasi bentuk yang lebih erat, menghasilkan suatu zat padat, dan melepaskan energi. Peningkatan energi akan mencairkan es walaupun suhu tidak akan berubah sampai semua es cair. Peningkatan suhu air pada gilirannya akan menyebabkannya mendidih (lihat panas penguapan) sewaktu terdapat cukup energi untuk mengatasi gaya tarik antarmolekul dan selanjutnya memungkinkan molekul untuk bergerak menjauhi satu sama lain.
Ilmuwan yang mempelajari kimia sering disebut kimiawan. Sebagian besar kimiawan melakukan spesialisasi dalam satu atau lebih subdisiplin. Kimia yang diajarkan pada sekolah menengah sering disebut "kimia umum" dan ditujukan sebagai pengantar terhadap banyak konsep-konsep dasar dan untuk memberikan pelajar alat untuk melanjutkan ke subjek lanjutannya. Banyak konsep yang dipresentasikan pada tingkat ini sering dianggap tak lengkap dan tidak akurat secara teknis. Walaupun demikian, hal tersebut merupakan alat yang luar biasa. Kimiawan secara reguler menggunakan alat dan penjelasan yang sederhana dan elegan ini dalam karya mereka, karena terbukti mampu secara akurat membuat model reaktivitas kimia yang sangat bervariasi.
Ilmu kimia secara sejarah merupakan pengembangan baru, tapi ilmu ini berakar pada alkimia yang telah dipraktikkan selama berabad-abad di seluruh dunia.

[sunting] Sejarah

Robert Boyle, perintis kimia modern dengan menggunakan eksperimen terkontrol, sebagai kontras dari metode alkimia terdahulu.
Akar ilmu kimia dapat dilacak hingga fenomena pembakaran. Api merupakan kekuatan mistik yang mengubah suatu zat menjadi zat lain dan karenanya merupakan perhatian utama umat manusia. Adalah api yang menuntun manusia pada penemuan besi dan gelas. Setelah emas ditemukan dan menjadi logam berharga, banyak orang yang tertarik menemukan metode yang dapat mengubah zat lain menjadi emas. Hal ini menciptakan suatu protosains yang disebut Alkimia. Alkimia dipraktikkan oleh banyak kebudayaan sepanjang sejarah dan sering mengandung campuran filsafat, mistisisme, dan protosains.
Alkimiawan menemukan banyak proses kimia yang menuntun pada pengembangan kimia modern. Seiring berjalannya sejarah, alkimiawan-alkimiawan terkemuka (terutama Abu Musa Jabir bin Hayyan dan Paracelsus) mengembangkan alkimia menjauh dari filsafat dan mistisisme dan mengembangkan pendekatan yang lebih sistematik dan ilmiah. Alkimiawan pertama yang dianggap menerapkan metode ilmiah terhadap alkimia dan membedakan kimia dan alkimia adalah Robert Boyle (1627–1691). Walaupun demikian, kimia seperti yang kita ketahui sekarang diciptakan oleh Antoine Lavoisier dengan hukum kekekalan massanya pada tahun 1783. Penemuan unsur kimia memiliki sejarah yang panjang yang mencapai puncaknya dengan diciptakannya tabel periodik unsur kimia oleh Dmitri Mendeleyev pada tahun 1869.
Penghargaan Nobel dalam Kimia yang diciptakan pada tahun 1901 memberikan gambaran bagus mengenai penemuan kimia selama 100 tahun terakhir. Pada bagian awal abad ke-20, sifat subatomik atom diungkapkan dan ilmu mekanika kuantum mulai menjelaskan sifat fisik ikatan kimia. Pada pertengahan abad ke-20, kimia telah berkembang sampai dapat memahami dan memprediksi aspek-aspek biologi yang melebar ke bidang biokimia.
Industri kimia mewakili suatu aktivitas ekonomi yang penting. Pada tahun 2004, produsen bahan kimia 50 teratas global memiliki penjualan mencapai 587 bilyun dolar AS dengan margin keuntungan 8,1% dan pengeluaran riset dan pengembangan 2,1% dari total penjualan [2].

[sunting] Cabang ilmu kimia

Pipet laboratorium
Kimia umumnya dibagi menjadi beberapa bidang utama. Terdapat pula beberapa cabang antar-bidang dan cabang-cabang yang lebih khusus dalam kimia.
Lima Cabang Utama:
Cabang - cabang Ilmu Kimia yang merupakan tumpang-tindih satu atau lebih lima cabang utama:
Bidang lain antara lain adalah astrokimia, biologi molekular, elektrokimia, farmakologi, fitokimia, fotokimia, genetika molekular, geokimia, ilmu bahan, kimia aliran, kimia atmosfer, kimia benda padat, kimia hijau, kimia inti, kimia medisinal, kimia komputasi, kimia lingkungan, kimia organologam, kimia permukaan, kimia polimer, kimia supramolekular, nanoteknologi, petrokimia, sejarah kimia, sonokimia, teknik kimia, serta termokimia.

[sunting] Konsep dasar

[sunting] Tatanama

Logo IUPAC.
Tatanama kimia merujuk pada sistem penamaan senyawa kimia. Telah dibuat sistem penamaan spesies kimia yang terdefinisi dengan baik. Senyawa organik diberi nama menurut sistem tatanama organik. Senyawa anorganik dinamai menurut sistem tatanama anorganik.

[sunting] Atom

Atom adalah suatu kumpulan materi yang terdiri atas inti yang bermuatan positif, yang biasanya mengandung proton dan neutron, dan beberapa elektron di sekitarnya yang mengimbangi muatan positif inti. Atom juga merupakan satuan terkecil yang dapat diuraikan dari suatu unsur dan masih mempertahankan sifatnya, terbentuk dari inti yang rapat dan bermuatan positif dikelilingi oleh suatu sistem elektron.

[sunting] Unsur

Bijih uranium
Unsur adalah sekelompok atom yang memiliki jumlah proton yang sama pada intinya. Jumlah ini disebut sebagai nomor atom unsur. Sebagai contoh, semua atom yang memiliki 6 proton pada intinya adalah atom dari unsur kimia karbon, dan semua atom yang memiliki 92 proton pada intinya adalah atom unsur uranium.

[sunting] Ion

Ion atau spesies bermuatan, atau suatu atom atau molekul yang kehilangan atau mendapatkan satu atau lebih elektron. Kation bermuatan positif (misalnya kation natrium Na+) dan anion bermuatan negatif (misalnya klorida Cl) dapat membentuk garam netral (misalnya natrium klorida, NaCl). Contoh ion poliatom yang tidak terpecah sewaktu reaksi asam-basa adalah hidroksida (OH) dan fosfat (PO43−).

[sunting] Senyawa

Senyawa merupakan suatu zat yang dibentuk oleh dua atau lebih unsur dengan perbandingan tetap yang menentukan susunannya. sebagai contoh, air merupakan senyawa yang mengandung hidrogen dan oksigen dengan perbandingan dua terhadap satu. Senyawa dibentuk dan diuraikan oleh reaksi kimia.

[sunting] Molekul

Molekul adalah bagian terkecil dan tidak terpecah dari suatu senyawa kimia murni yang masih mempertahankan sifat kimia dan fisik yang unik. Suatu molekul terdiri dari dua atau lebih atom yang terikat satu sama lain.

[sunting] Zat kimia

Suatu 'zat kimia' dapat berupa suatu unsur, senyawa, atau campuran senyawa-senyawa, unsur-unsur, atau senyawa dan unsur. Sebagian besar materi yang kita temukan dalam kehidupan sehari-hari merupakan suatu bentuk campuran, misalnya air, aloy, biomassa, dll.

[sunting] Ikatan kimia

Orbital atom dan orbital molekul elektron
Ikatan kimia merupakan gaya yang menahan berkumpulnya atom-atom dalam molekul atau kristal. Pada banyak senyawa sederhana, teori ikatan valensi dan konsep bilangan oksidasi dapat digunakan untuk menduga struktur molekular dan susunannya. Serupa dengan ini, teori-teori dari fisika klasik dapat digunakan untuk menduga banyak dari struktur ionik. Pada senyawa yang lebih kompleks/rumit, seperti kompleks logam, teori ikatan valensi tidak dapat digunakan karena membutuhken pemahaman yang lebih dalam dengan basis mekanika kuantum.

[sunting] Wujud zat

Fase adalah kumpulan keadaan sebuah sistem fisik makroskopis yang relatif serbasama baik itu komposisi kimianya maupun sifat-sifat fisikanya (misalnya masa jenis, struktur kristal, indeks refraksi, dan lain sebagainya). Contoh keadaan fase yang kita kenal adalah padatan, cair, dan gas. Keadaan fase yang lain yang misalnya plasma, kondensasi Bose-Einstein, dan kondensasi Fermion. Keadaan fase dari material magnetik adalah paramagnetik, feromagnetik dan diamagnetik.

[sunting] Reaksi kimia

Reaksi kimia antara hidrogen klorida dan amonia membentuk senyawa baru amonium klorida
Reaksi kimia adalah transformasi/perubahan dalam struktur molekul. Reaksi ini bisa menghasilkan penggabungan molekul membentuk molekul yang lebih besar, pembelahan molekul menjadi dua atau lebih molekul yang lebih kecil, atau penataulangan atom-atom dalam molekul. Reaksi kimia selalu melibatkan terbentuk atau terputusnya ikatan kimia.

[sunting] Kimia kuantum

Kimia kuantum secara matematis menjelaskan kelakuan dasar materi pada tingkat molekul. Secara prinsip, dimungkinkan untuk menjelaskan semua sistem kimia dengan menggunakan teori ini. Dalam praktiknya, hanya sistem kimia paling sederhana yang dapat secara realistis diinvestigasi dengan mekanika kuantum murni dan harus dilakukan hampiran untuk sebagian besar tujuan praktis (misalnya, Hartree-Fock, pasca-Hartree-Fock, atau teori fungsi kerapatan, lihat kimia komputasi untuk detilnya). Karenanya, pemahaman mendalam mekanika kuantum tidak diperlukan bagi sebagian besar bidang kimia karena implikasi penting dari teori (terutama hampiran orbital) dapat dipahami dan diterapkan dengan lebih sederhana.
Dalam mekanika kuantum (beberapa penerapan dalam kimia komputasi dan kimia kuantum), Hamiltonan, atau keadaan fisik, dari partikel dapat dinyatakan sebagai penjumlahan dua operator, satu berhubungan dengan energi kinetik dan satunya dengan energi potensial. Hamiltonan dalam persamaan gelombang Schrödinger yang digunakan dalam kimia kuantum tidak memiliki terminologi bagi putaran elektron.
Penyelesaian persamaan Schrödinger untuk atom hidrogen memberikan bentuk persamaan gelombang untuk orbital atom, dan energi relatif dari orbital 1s, 2s, 2p, dan 3p. Hampiran orbital dapat digunakan untuk memahami atom lainnya seperti helium, litium, dan karbon.

[sunting] Hukum kimia

Hukum-hukum kimia sebenarnya merupakan hukum fisika yang diterapkan dalam sistem kimia. Konsep yang paling mendasar dalam kimia adalah Hukum kekekalan massa yang menyatakan bahwa tidak ada perubahan jumlah zat yang terukur pada saat reaksi kimia biasa. Fisika modern menunjukkan bahwa sebenarnya energilah yang kekal, dan bahwa energi dan massa saling berkaitan. Kekekalan energi ini mengarahkan kepada pentingnya konsep kesetimbangan, termodinamika, dan kinetika.

[sunting] Industri Kimia

Industri kimia adalah salah satu aktivitas ekonomi yang penting. Top 50 produser kimia dunia pada tahun 2004 mempunyai penjualan sebesar USD $587 milyar dengan profit margin sebesar 8.1% dan penegluaran rekayasa (research and development) sebesar 2.1% dari total penjualan kimia. [3]

[sunting] Referensi

  1. ^ "Chemistry - The Central Science". The Chemistry Hall of Fame. York University. Diakses pada 12 September 2006.
  2. ^ "Top 50 Chemical Producers". Chemical & Engineering News 83 (29): 20–23. Kesalahan: waktu tidak valid.
  3. ^ "Top 50 Chemical Producers". Chemical & Engineering News 83 (29): 20–23. Kesalahan: waktu tidak valid.

[sunting] Lihat pula

[sunting] Daftar Pustaka

  • Atkins, P.W. Galileo's Finger (Oxford University Press)
  • Atkins, P.W. Physical Chemistry (Oxford University Press) ISBN 0-19-879285-9
  • Atkins, P.W. et al. Molecular Quantum Mechanics (Oxford University Press)
  • Atkins, P.W., Overton,T., Rourke,J., Weller,M. and Armstrong,F. Shriver and Atkins inorganic chemistry(4th edition) 2006(Oxford University Press) ISBN 0-19-926463-5
  • Chang, Raymond. Chemistry 6th ed. Boston: James M. Smith, 1998. ISBN 0-07-115221-0.
  • Clayden,J., Greeves,N., Warren,S., Wothers,P. Organic Chemistry 2000 (Oxford University Press) ISBN 0-19-850346-6
  • McWeeny, R. Coulson's Valence (Oxford Science Publications) ISBN 0-19-855144-4
  • Pauling, L. General Chemistry (Dover Publications) ISBN 0-486-65622-5
  • Pauling, L. The Nature of the chemical bond (Cornell University Press) ISBN 0-8014-0333-2
  • Pauling, L., and Wilson, E. B. Introduction to Quantum Mechanics with Applications to Chemistry (Dover Publications) ISBN 0-486-64871-0
  • Smart and Moore Solid State Chemistry: An Introduction (Chapman and Hall) ISBN 0-412-40040-5
  • Stephenson, G. Mathematical Methods for Science Students (Longman)ISBN 0-582-44416-0
  • Voet and Voet Biochemistry (Wiley) ISBN 0-471-58651-X

[sunting] Pranala luar